Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 32.1
bearbeitet von kerstinhauptmann
am 2025/11/06 09:23
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 55.1
bearbeitet von kerstinhauptmann
am 2025/11/06 14:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -7,6 +7,22 @@
7 7  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen.
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 +{{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}}
11 +
12 +1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}= 8 cm{{/formula}}.
13 +1. Bestimme den Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AB}{{/formula}}.
14 +1. Zeichne die Senkrechte zur Strecke {{formula}}\overline{AB}{{/formula}} durch den Mittelpunkt {{formula}}M{{/formula}}.
15 +1. Zeichne drei weitere beliebige Geraden durch den Mittelpunkt {{formula}}M{{/formula}}.
16 +1. Zeichne einen Kreis mit dem Radius {{formula}}r=10cm{{/formula}}.
17 +1. Die Geraden schneiden den Kreis jeweils in den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
18 +1. Messe jeweils die Abstände von A und B zu den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
19 +1. Gibt es einen Punkt {{formula}}S_i{{/formula}}, für den der Abstand zu den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}} annähernd oder sogar exakt gleich ist?
20 +1. Zeichne einen weiteren Kreis um {{formula}}A{{/formula}} mit beliebigem Radius {{formula}}r{{/formula}}.
21 +Untersuche auch hier die Abstände von den Schnittpunkten der Geraden mit dem neuen Kreis und den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}}.
22 +1. Erläutere, welche Eigenschaften die Schnittpunkte haben, die auf der Senkrechten zur Strecke {{formula}}\overline{AB}{{/formula}} liegen.
23 +Überlege einen passenden Namen zu dieser Geraden.
24 +{{/aufgabe}}
25 +
10 10  {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}}
11 11  Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
12 12  (%class=abc%)
... ... @@ -23,10 +23,11 @@
23 23  1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen.
24 24  {{/aufgabe}}
25 25  
26 -{{aufgabe id="Anwendungsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
27 -1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}P(2|4){{/formula}} in ein Koordinatensystem ein.
28 -1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}P{{/formula}} geht. Gib ihre Gleichung an.
29 -1. Konstruiere die Gerade, die von {{formula}}g{{/formula}} und {{formula}}P{{/formula}} den gleichen Abstand hat.
42 +{{aufgabe id="Konstruktionsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
43 +1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}A(2|4){{/formula}} in ein Koordinatensystem ein.
44 +1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}A{{/formula}} verläuft. Gib ihre Gleichung an.
45 +1. Konstruiere die Parallele {{formula}}p{{/formula}} zu {{formula}}g{{/formula}}, die durch {{formula}}A{{/formula}} verläuft.
46 +1. Konstruiere zu {{formula}}g{{/formula}} und {{formula}}p{{/formula}} die Mittelparallele {{formula}}m{{/formula}}.
30 30  {{/aufgabe}}
31 31  
32 32  {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
Grundkonstruktion Mittelsenkrechte.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.kerstinhauptmann
Größe
... ... @@ -1,0 +1,1 @@
1 +66.5 KB
Inhalt
Grundkonstruktion Mittelsenkrechte.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.kerstinhauptmann
Größe
... ... @@ -1,0 +1,1 @@
1 +53.9 KB
Inhalt
Konstruktionsaufgabe.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.kerstinhauptmann
Größe
... ... @@ -1,0 +1,1 @@
1 +36.8 KB
Inhalt
Konstruktionsaufgabe.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.kerstinhauptmann
Größe
... ... @@ -1,0 +1,1 @@
1 +81.5 KB
Inhalt