Version 34.1 von kerstinhauptmann am 2025/11/06 10:20

Verstecke letzte Bearbeiter
Holger Engels 1.1 1 {{seiteninhalt/}}
2
Holger Engels 2.1 3 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Ortslinien, Höhen im Dreieck und Seitenhalbierende grafisch darstellen.
4 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann geometrische Probleme zeichnerisch lösen.
5 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann besondere Punkte im Dreieck mithilfe von Zirkel und Lineal ermitteln.
6 [[Kompetenzen.K1]] [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann Konstruktionen besonderer Punkte im Dreieck begründen.
7 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen.
8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
Holger Engels 1.1 9
Dirk Tebbe 31.2 10 {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}}
Dirk Tebbe 13.1 11 Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
Dirk Tebbe 12.2 12 (%class=abc%)
Dirk Tebbe 20.2 13 1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
Dirk Tebbe 20.3 14 1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
kerstinhauptmann 28.1 15 1. Ermittle grafisch durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft.
Dirk Tebbe 21.3 16 1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat.
Dirk Tebbe 12.2 17 {{/aufgabe}}
18
kerstinhauptmann 32.1 19 {{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K3, K4,K6" zeit="10" cc="by-sa"}}
Dirk Tebbe 22.2 20 Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}.
Dirk Tebbe 18.2 21 (%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}.
Dirk Tebbe 24.3 22 1. Untersuche, welches der Kinder von seinem Wohnort zu den beiden Haltestellen gleich weit hat.
Dirk Tebbe 18.2 23 1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen.
Dirk Tebbe 18.1 24 {{/aufgabe}}
25
Dirk Tebbe 31.2 26 {{aufgabe id="Anwendungsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
Dirk Tebbe 18.5 27 1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}P(2|4){{/formula}} in ein Koordinatensystem ein.
Dirk Tebbe 18.6 28 1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}P{{/formula}} geht. Gib ihre Gleichung an.
Dirk Tebbe 20.3 29 1. Konstruiere die Gerade, die von {{formula}}g{{/formula}} und {{formula}}P{{/formula}} den gleichen Abstand hat.
Dirk Tebbe 18.3 30 {{/aufgabe}}
31
Martina Wagner 5.1 32 {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
Holger Engels 4.1 33 Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite.
34
Martina Wagner 5.1 35 Ein Dreieck im Koordinatensystem hat die Eckpunkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}}.
Holger Engels 4.1 36 (%class=abc%)
kerstinhauptmann 31.1 37 1. Bestimme die Gleichung der Gerade, die durch {{formula}}A{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild.
38 1. Bestimme die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild.
Martina Wagner 5.1 39 1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt.
Holger Engels 4.1 40 {{/aufgabe}}
41
Martina Wagner 5.1 42 {{aufgabe id="Umfang eines Dreiecks" afb="II" quelle="Team Mathebrücke" kompetenzen=" K5" zeit="5" cc="by-sa" tags="mathebrücke"}}
Holger Engels 4.1 43 Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}.
44 {{/aufgabe}}
45
Slavko Lamp 10.1 46
Holger Engels 1.1 47 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}