Änderungen von Dokument BPE 5.2 Kongruenz, Kongruenzsätze und Konstruierbarkeit
Zuletzt geändert von Holger Engels am 2025/12/01 19:34
Von Version 76.1
bearbeitet von Martin Rathgeb
am 2025/11/17 01:41
am 2025/11/17 01:41
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 74.1
bearbeitet von Martin Rathgeb
am 2025/11/17 00:48
am 2025/11/17 00:48
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -14,20 +14,9 @@ 14 14 {{/aufgabe}} 15 15 16 16 {{aufgabe id="Konstruierbarkeit von Dreiecken" afb="II" kompetenzen="K1,K2,K6" quelle="Nicole Böhringer, Slavko Lamp, Martin Rathgeb" zeit="10" cc="by-sa"}} 17 -Beurteile für jede der folgenden Dreierangaben, ob damit ein Dreieck eindeutig konstruierbar, mehrdeutig konstruierbar oder nicht existent ist. 18 -Begründe deine Entscheidung mithilfe geeigneter geometrischer Argumente, beispielsweise Kongruenzsätzen, der Winkelsumme im Dreieck, der Dreiecksungleichung oder Lageargumenten. 17 +Beurteile (insbesondere mittels Kongruenzsätzen), ob die Konstruktion eines Dreiecks mit den Angaben eindeutig, mehrdeutig oder unmöglich ist. 19 19 (% class="abc" %) 20 -1. {{formula}}\alpha = 63^\circ{{/formula}}, {{formula}}b = 5{,}7\ \text{cm}{{/formula}}, {{formula}}c = 12{,}8\ \text{cm}{{/formula}} 21 -1. {{formula}}\beta = 53^\circ{{/formula}}, {{formula}}b = 4{,}5\ \text{cm}{{/formula}}, {{formula}}c = 5{,}0\ \text{cm}{{/formula}} 22 -1. {{formula}}a = 6\ \text{cm}{{/formula}}, {{formula}}\beta = 42^\circ{{/formula}}, {{formula}}\gamma = 28^\circ{{/formula}} 23 -1. {{formula}}a = 3\ \text{cm}{{/formula}}, {{formula}}\beta = 103^\circ{{/formula}}, {{formula}}\gamma = 87^\circ{{/formula}} 24 -1. {{formula}}\alpha = 60^\circ{{/formula}}, {{formula}}\beta = 23^\circ{{/formula}}, {{formula}}\gamma = 97^\circ{{/formula}} 25 -1. {{formula}}\alpha = 50^\circ{{/formula}},{{formula}}\beta = 60^\circ{{/formula}}, {{formula}}\gamma = 55^\circ{{/formula}} 26 -1. {{formula}}a = 8\ \text{cm}{{/formula}}, {{formula}}b = 4{,}5\ \text{cm}{{/formula}}, {{formula}}c = 5{,}0\ \text{cm}{{/formula}} 27 -1. {{formula}}a = 12\ \text{cm}{{/formula}}, {{formula}}b = 6\ \text{cm}{{/formula}}, {{formula}}c = 5\ \text{cm}{{/formula}} 28 - 29 - 30 - 1. {{formula}}\alpha = 63^\circ; \ b = 5,\! 7\text{ cm}; \ c = 12,\! 8\text{ cm}{{/formula}} 19 +1. {{formula}}\alpha = 63^\circ; \ b = 5,\! 7\text{ cm}; \ c = 12,\! 8\text{ cm}{{/formula}} 31 31 1. {{formula}}\beta = 53^\circ; \ b = 4, \! 5\text{ cm}; \ c = 5\text{ cm}{{/formula}} 32 32 1. {{formula}}a = 6\text{ cm}; \ \beta = 42^\circ; \ \gamma = 28^\circ{{/formula}} 33 33 1. {{formula}}\ a = 3\text{ cm}; \ \beta = 103^\circ ; \ \gamma = 87^\circ{{/formula}}