Änderungen von Dokument BPE 8.6 Quadratische Ungleichungen

Zuletzt geändert von Sarah Könings am 2025/11/18 13:09

Von Version 22.2
bearbeitet von Sarah Könings
am 2025/11/17 13:34
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 24.4
bearbeitet von majaseiboth
am 2025/11/17 14:35
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.sarahkoenings
1 +XWiki.majaseiboth
Inhalt
... ... @@ -14,12 +14,22 @@
14 14  
15 15  {{/aufgabe}}
16 16  
17 -{{aufgabe id="Quadratische Ungleichungen aufstellen" afb="II,III" quelle="Maja Seiboth,Sarah Könings" kompetenzen="K5,K" zeit="20"}}
18 -{{formula}}L= \{x|-2<x<1\}{{/formula}}
17 +{{aufgabe id="Quadratische Ungleichungen aufstellen" afb="II,III" quelle="Maja Seiboth,Sarah Könings" kompetenzen="K5" zeit="30"}}
18 +Gegeben ist die folgende Lösungsmenge: {{formula}}L= \{x|-3<x<1\}{{/formula}}
19 19  (%class="abc"%)
20 20  1. Ermittle eine zur Lösungsmenge passende quadratische Ungleichung.
21 21  1. Ermittle eine weitere zur Lösungsmenge passende quadratische Ungleichung.
22 -1. Begründe warum es unendlich viele passende quadratische Ungleichungen eine zur Lösungsmenge passende quadratische Ungleichung.
22 +1. Begründe warum es unendlich viele passende quadratische Ungleichungen zur gegebenen Lösungsmenge gibt.
23 +1. Begründe warum es für jede Lösungsmenge unendlich viele passende quadratische Ungleichungen gibt.
23 23  
25 +{{/aufgabe}}
24 24  
27 +{{aufgabe id="Lösungen quadratischer Ungleichungen graphisch interpretieren" afb="II,III" quelle="Maja Seiboth,Sarah Könings" kompetenzen="K4" zeit="20"}}
28 +{{formula}}L= \{x|-3<x<1\}{{/formula}}
29 +(%class="abc"%)
30 +1. Ermittle eine zur Lösungsmenge passende quadratische Ungleichung.
31 +1. Ermittle eine weitere zur Lösungsmenge passende quadratische Ungleichung.
32 +1. Begründe warum es unendlich viele passende quadratische Ungleichungen zur gegebenen Lösungsmenge gibt.
33 +1. Begründe warum es für jede Lösungsmenge unendlich viele passende quadratische Ungleichungen gibt.
34 +
25 25  {{/aufgabe}}