Von Version 14.1
bearbeitet von Holger Engels
am 2023/11/03 08:30
am 2023/11/03 08:30
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 115.1
bearbeitet von Holger Engels
am 2023/11/30 09:57
am 2023/11/30 09:57
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 12 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,46 +3,19 @@ 1 -{{aufgabe id="Kombinatorik" afb="III" Kompetenzen="" quelle="Andreas Dinh" cc="BY-SA"}} 2 -[[image:10-seitiger Würfel.jpg||width="120" style="float: right"]]Fünf zehnseitige Würfel (mit den Zahlen 1–10) werden gleichzeitig in einem Würfelbecher geworfen. Für jeden Würfel beträgt die Wahrscheinlichkeit für jede Augenzahl 10%. 3 3 4 -Untersuche, wie viele unterschiedliche Wurfbilder geworfen werden können. (unterschiedlich im Sinne von alle verschieden, zwei gleiche, ..., alle gleich) 2 +{{aufgabe id="Skate-Rampe" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 3 + 4 +Die folgende Abbildung zeigt eine Skate-Rampe. 5 5 6 - ,,**Bild: **[[Dietmar Rabich>>https://commons.wikimedia.org/wiki/User:XRay]], [[Würfel, pentagonales Trapezoeder>>https://commons.wikimedia.org/wiki/File:Würfel,_pentagonales_Trapezoeder_(W10)_--_2021_--_5627.jpg]], Ausschnitt, [[CC BY-SA4.0>>https://creativecommons.org/licenses/by-sa/4.0/legalcode]],,7 - {{/aufgabe}}6 +[[image:Skate-Rampe.PNG||width="450"]] 7 +(% style="font-size: 0.8em;" %)**Abb.: Skate-Rampe** (vgl. Haas & Morath (2006) (Hrsg.). //„Anwendungsorientierte Aufgaben für die Sekundarstufe II“(S.39)//. Braunschweig: Westermann Verlag.) 8 8 9 -{{aufgabe id="Uneigentliches Integral" afb="III" Kompetenzen="" quelle="Andreas Dinh" cc="BY-SA"}} 10 -Betrachtet wird für negative rationale Zahlen //q// die Potenzfunktion //p// mit {{formula}}p(x)=x^q;\: x\neq 0{{/formula}}. 11 11 12 -Für {{formula}}b \rightarrow \infty{{/formula}} heißt {{formula}}U_q=\int_1^b{p(x)}\cdot dx{{/formula}} //uneigentliches Integral// über //p//, falls {{formula}}U_q{{/formula}} eine reelle Zahl ergibt. 10 +{{lehrende}} 11 +**Variante 1: Offene Aufgabe für den Unterricht/für einen größeren Klassenarbeitsteil** 12 +Wie schwer wäre sie, wenn man sie massiv aus Beton gießen würde? 13 +**Information:** Die Dichte von Beton liegt zwischen 1,5 und 2,5 g/cm^^3^^ 13 13 14 -Überprüfe, für welche Werte von //q// das uneigentliche Integral {{formula}}U_q{{/formula}} existiert. 15 - 16 -[[image:x hoch minus 2.png]] 15 +**Variante 2: Kleinere Klassenarbeitsaufgabe** 16 +Die Rampe ist massiv aus Beton gegossen. 17 +Diskutiere Möglichkeiten, das Gewicht der Rampe nur anhand der Abbildung und der Dichte von Beton (zwischen 1,5 und 2,5 g/cm^^3^^) abzuschätzen. 18 +{{/lehrende}} 17 17 {{/aufgabe}} 18 - 19 -{{aufgabe id="Glücksrad" afb="III" Kompetenzen="" quelle="Andreas Dinh" cc="BY-SA"}} 20 -[[image:Glücksrad.svg||width="180" style="float: right"]]Ein Glücksrad mit einem roten Gewinnbereich von einem Viertel wird so gedreht, dass es in einer völlig zufälligen Position zum Stillstand kommt. Einen Beobachter interessiert, wie groß der Abstand der Halteposition (grünes Dreieck in der Skizze) zum Gewinnbereich ist. Er misst den Abstand in Grad. 21 - 22 -So ist der Abstand z.B. 0°, falls das Glücksrad im Gewinnbereich zum Stillstand kommt und 90°, falls es nach einem Drittel oder zwei Dritteln des Verlustbereichs zum Stillstand kommt. 23 - 24 -Bestimme mit Hilfe einer geeigneten Zeichnung den Erwartungswert dieses Abstands bei einmaliger Drehung des Glücksrads. 25 - 26 - 27 - 28 - 29 -{{/aufgabe}} 30 - 31 -{{aufgabe id="Annäherung" afb="III" Kompetenzen="" quelle="Andreas Dinh" cc="BY-SA"}} 32 -[[image:cos und pot.png|| style="float: right" width="320"]]In //[0; π/2]// soll die Funktion //f// mit {{formula}}f(x)=\cos{x}{{/formula}} durch eine Potenzfunktion //g// mit {{formula}}g(x)=1-ax^q{{/formula}} angenähert werden, wobei //q// eine positive rationale Zahl ist und //a// so gewählt wird, dass der Graph von //g// ebenfalls bei //π/2// eine Nullstelle besitzt. 33 - 34 -(% style="list-style: alphastyle" %) 35 -1. Bestimme //a// in Abhängigkeit von //q//. 36 -1. (((Begründe, weshalb ein kleiner Wert des Integrals 37 - 38 -{{formula}}\int_0_{\pi/2}{f(x)-g(x)}\cdot dx{{/formula}} 39 - 40 -ein guter Hinweis dafür ist, dass //g// eine gute Näherung für //f// ist. 41 -))) 42 -1. Finde eine Potenzfunktion //g//, die //f// gemäß des Kriteriums von b) gut annähert. 43 - 44 -(Bonus: Stelle //f// und die Annäherung aus c) mit Geogebra dar und berechne die durchschnittliche Abweichung von //f// und der Annäherungsfunktion.) 45 -{{/aufgabe}} 46 -
- Blaettchen.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +10.5 KB - Inhalt
- Gaußsche Summenformel.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +149.3 KB - Inhalt
- Gitter 7x7.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +3.3 KB - Inhalt
-
... ... @@ -1,0 +1,1 @@ 1 +<svg version="1.1" viewBox="0.0 0.0 385.51181102362204 385.51181102362204" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l385.5118 0l0 385.5118l-385.5118 0l0 -385.5118z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#000000" fill-opacity="0.0" d="m0 0l385.5118 0l0 385.5118l-385.5118 0z" fill-rule="evenodd"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m3.7795277 2.28084l0 380.45404" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m57.771652 2.28084l0 58.826775" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m57.771652 61.107613l0 321.6273" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m111.76378 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m165.7559 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m219.74803 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m273.74014 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m327.73227 2.7795277l0 323.769" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m327.73227 326.54855l0 56.685028" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m381.7244 2.7795277l0 380.45404" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m2.7795277 3.7795277l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m59.27034 3.7795277l323.45404 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 59.608925l53.49344 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m56.272964 59.608925l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m112.76378 59.608925l269.96063 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 113.296585l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 166.98425l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 220.67192l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 274.3596l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 328.04724l269.9606 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m272.74014 328.04724l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m329.23096 328.04724l53.49344 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 381.7349l323.45404 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m326.23358 381.7349l56.490814 0" fill-rule="nonzero"/></g></svg>
- LhospitalPlot.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +412.8 KB - Inhalt
- Lichtschalter_mechanisch.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +112.1 KB - Inhalt
- Nichomachus.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +79.2 KB - Inhalt
- QuadratinKreisinQuadrat.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +21.0 KB - Inhalt
- Quadratspirale.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +11.9 KB - Inhalt
- Skate-Rampe.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +1.4 MB - Inhalt
- SpinneSchachtel.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +7.1 KB - Inhalt
- Tower_of_Hanoi.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +56.0 KB - Inhalt
- unendlicheQuadrate.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +10.7 KB - Inhalt