Änderungen von Dokument Pool

Zuletzt geändert von akukin am 2024/10/10 21:16

Von Version 82.1
bearbeitet von Holger Engels
am 2023/11/21 19:00
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 89.1
bearbeitet von akukin
am 2023/11/22 21:32
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -188,3 +188,35 @@
188 188  Im Unterricht eines J2-Kurses soll die Funktion {{formula}}f(x)=\frac{1}{2x}{{/formula}} aufgeleitet werden. Johann rechnet mit der Kettenregel der Aufleitung wie folgt: {{formula}}F(x)=\frac{1}{2}\ln(|2x|){{/formula}}. Johannes mag die Kettenregel nicht und formt den Term von //f// zunächst um: {{formula}}f(x)=\frac{1}{2}\cdot\frac{1}{x}{{/formula}}, denn danach wird die Aufleitung ganz einfach: {{formula}}F(x)=\frac{1}{2}\ln(|x|){{/formula}}. Die beiden geraten in eine Diskussion darüber, welche Lösung richtig ist. Überprüfe dies.
189 189  {{/aufgabe}}
190 190  
191 +
192 +{{aufgabe id="Gaußsche Summenformel" afb="" Kompetenzen="" tags="" quelle="" cc="BY-SA" zeit=""}}
193 +Die Summe der ersten //n// natürlichen Zahlen 1 + 2 + 3 + ⋯ + //n// kann man mit der
194 +sogenannten Gaußschen Summenformel berechnen.
195 +[[image:Gaußsche Summenformel.PNG||width="420"]]
196 +
197 +{{lehrende}}
198 +**Variante 1:**Offene Aufgabe für den Unterricht & für die Klassenarbeit
199 +Ermittle diese Formel mit Hilfe der obigen grafischen Darstellung
200 +
201 +**Variante 2:** Kleinere Klassenarbeitsvariante, Vergleich von Strategien, Verallgemeinerung
202 +Drei Mitschüler legen dir die folgenden Ergebnisse vor.
203 +**Schüler 1:** 1 + 2 + 3 +{{formula}}\dots{{/formula}} + n =n(n+1)
204 +**Schüler 2:** 1 + 2 + 3 +{{formula}}\dots{{/formula}} + n ={{formula}}\frac{1}{6}{{/formula}} n(n+1)(n+2)
205 +**Schüler 3:** 1 + 2 + 3 +{{formula}}\dots{{/formula}} + n ={{formula}}\frac{1}{2}{{/formula}} n(n+1)
206 +Begründe, welcher Schüler die richtige Formel gefunden hat und erkläre, warum
207 +die folgende grafische Darstellung bei der Ermittlung der richtigen Summenformel helfen kann.
208 +{{/lehrende}}
209 +{{/aufgabe}}
210 +
211 +{{aufgabe id="Nichomachus" afb="" Kompetenzen="" tags="" quelle="" cc="BY-SA" zeit=""}}
212 +„Wenn ich alle natürlichen Zahlen bis zu einer beliebigen Zahl (zum Beispiel bis zu meiner Lieblingszahl) zusammenzähle und dann diese Summe quadriere, erhalte ich dasselbe Ergebnis, wie wenn ich die Zahlen zuerst einzeln hoch drei nehme und dann zusammenzähle.“
213 +
214 +{{lehrende}}
215 +**Offene Aufgabe für den Unterricht & für die Klassenarbeit**
216 +{{/lehrende}}
217 +
218 +Untersuche diese Behauptung. Dazu kannst du bei Bedarf folgende Grafik benutzen:
219 +[[image:Nichomachus.PNG||width="420"]]
220 +Gib, sofern diese Behauptung stimmt, eine allgemeine Formel an.
221 +{{/aufgabe}}
222 +
Gaußsche Summenformel.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +149.3 KB
Inhalt
Nichomachus.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +79.2 KB
Inhalt