Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 111.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:03
am 2025/01/05 15:03
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 180.1
bearbeitet von Martin Rathgeb
am 2025/01/07 20:40
am 2025/01/07 20:40
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 3 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,5 +1,75 @@ 1 1 {{seiteninhalt/}} 2 2 3 +{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4, K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}} 4 +(% class="abc" %) 5 +1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 6 +(% class="border slim" %) 7 +| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 8 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 9 +| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 10 + 11 +))) 12 +1. (((Nenne die Werte der charakteristischen Größen der Parabel: 13 +1. (((//Lage//. 14 +i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel 15 +ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}} 16 +iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 17 +))) 18 +1. (((//Kovariation//. 19 +i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}} 20 +ii. Krümmung {{formula}}a{{/formula}} 21 +))) 22 +))) 23 +{{/aufgabe}} 24 + 25 +{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 26 +In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 27 +(% class="border slim" %) 28 +|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 29 +|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 30 +|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 31 +|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 + 33 +Es gelten folgende Beziehungen zwischen den Parametern, wobei 34 + 35 +(% class="border slim" %) 36 +|Nr. |Von |Zu |Beziehungen 37 +|1 |Scheitelform |pq-Form |{{formula}}p = -2x_S, \, q = x_S^2 + y_S^*{{/formula}} 38 +|2 |pq-Form |Scheitelform |{{formula}}x_S = -\frac{p}{2}, \, y_S^* = -\frac{p^2}{4} + q{{/formula}} 39 +|3 |Scheitelform |Produktform |{{formula}}x_1 = x_S - \sqrt{-y_S^*}, \, x_2 = x_S + \sqrt{-y_S^*}{{/formula}} 40 +|4 |pq-Form |Produktform |{{formula}}x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \, x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}{{/formula}} 41 +|5 |Produktform |pq-Form |{{formula}}p = -(x_1 + x_2), \, q = x_1 x_2{{/formula}} 42 +|6 |Produktform |Scheitelform |{{formula}}x_S = \frac{x_1 + x_2}{2}, \, y_S^* = -\frac{(x_2 - x_1)^2}{4}{{/formula}} 43 + 44 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 45 +(% class="border slim" %) 46 +|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 47 + 48 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 49 +(% class="border slim" %) 50 +|[[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] {{formula}}\quad{{/formula}} |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] 51 +|(Video 27:00)|(Video 33:11) 52 + 53 +(% class="abc" %) 54 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. Folge in Vorgehen und Darstellung obigen Beispielen (dem konkreten und dem allgemeinen). 55 +1. {{formula}}y=x^2-7x+12{{/formula}} 56 +1. {{formula}}y=x^2-14x+24{{/formula}} 57 +1. {{formula}}y=x^2-8x+13{{/formula}} 58 +1. {{formula}}y=x^2+6x-4{{/formula}} 59 +1. {{formula}}y=2x^2-4x-5 {{/formula}} 60 +1. {{formula}}y=3x^2-7x+12{{/formula}} 61 + 62 +))) 63 +1. (((Begründe, dass gilt: 64 +i. {{formula}}\frac{b}{a}=p{{/formula}} und {{formula}}\frac{c}{a}=q{{/formula}} 65 +ii. {{formula}}2x_S=x_1+x_2=-p{{/formula}} und {{formula}}x_1\cdot x_2=q{{/formula}} 66 +iii. {{formula}}x_S=\frac{x_1+x_2}{2}=\frac{-p}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}} 67 +))) 68 +1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 69 +1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 70 +//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 71 +{{/aufgabe}} 72 + 3 3 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 4 4 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 5 5
- Po-ShenLoh_Quadratic.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +98.4 KB - Inhalt
- Po-ShenLoh_Quadratic_Example.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +828.1 KB - Inhalt
- Po-ShenLoh_Quadratic_Proof.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +612.4 KB - Inhalt