Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 148.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:16
am 2025/01/07 00:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 111.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:03
am 2025/01/05 15:03
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 3 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,75 +1,5 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 4 -//Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 5 -(% class="border slim" %) 6 -|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 7 - 8 -//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er die Methode zur Lösung quadratischer Gleichungen vor. 9 -(% class="border slim" %) 10 -|[[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] 11 -(% class="abc" %) 12 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung. 13 -1. {{formula}}f(x)=x^2-7x+12{{/formula}} 14 -1. {{formula}}f(x)=x^2-14x+22{{/formula}} 15 -1. {{formula}}f(x)=x^2-7x+12{{/formula}} 16 -1. {{formula}}f(x)=x^2-8x+13{{/formula}} 17 -1. {{formula}}f(x)=x^2+6x-4{{/formula}} 18 -1. {{formula}}f(x)=2x^2-4x-5 {{/formula}} 19 - 20 -))) 21 -1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 22 -//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 23 -{{/aufgabe}} 24 - 25 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 26 -IN PROGRESS 27 -(% class="abc" %) 28 -1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 29 -(% class="border slim" %) 30 -| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 31 -|{{formula}}y=\square (x-1)(x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KoorSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 32 -| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 33 - 34 -))) 35 -1. (((Nenne die Werte der charakteristischen Größen der Parabel: 36 -1. (((//Lage//. 37 -i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel 38 -ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}} 39 -iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 40 -))) 41 -1. (((//Kovariation//. 42 -i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}} 43 -ii. Krümmung {{formula}}a{{/formula}} 44 -))) 45 -))) 46 -{{/aufgabe}} 47 - 48 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 49 -IN PROGRESS 50 -In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 51 -(% class="border slim" %) 52 -|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 53 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 54 -|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 55 -|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 56 - 57 -(% class="abc" %) 58 -1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}} 59 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen. 60 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen. 61 -1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon. 62 - 63 -))) 64 -1. (((Erläutere, inwiefern {{formula}}\ldots{{/formula}} 65 -1. {{formula}}\ldots{{/formula}} die //Hauptform// und die //Produktform// zwei Spezialfälle der //Punkt-Steigungs-Form// sind. 66 -1. {{formula}}\ldots{{/formula}} nur die //Allgemeine Form// diese Bezeichnung mit Recht trägt; vgl. dazu a). 67 - 68 -))) 69 -1. Berechne aus den Parametern {{formula}}x_0, y_0{{/formula}} der Achsenabschnittsform die Steigung {{formula}}m{{/formula}}. 70 -{{/aufgabe}} 71 - 72 - 73 73 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 74 74 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 75 75
- Po-ShenLoh_Quadratic.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -98.4 KB - Inhalt
- Po-ShenLoh_Quadratic_Example.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -828.1 KB - Inhalt
- Po-ShenLoh_Quadratic_Proof.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -612.4 KB - Inhalt