Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 148.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:16
am 2025/01/07 00:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 173.1
bearbeitet von Martin Rathgeb
am 2025/01/07 12:22
am 2025/01/07 12:22
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,34 +1,11 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 4 -//Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 5 -(% class="border slim" %) 6 -|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 7 - 8 -//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er die Methode zur Lösung quadratischer Gleichungen vor. 9 -(% class="border slim" %) 10 -|[[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] 3 +{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4, K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}} 11 11 (% class="abc" %) 12 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung. 13 -1. {{formula}}f(x)=x^2-7x+12{{/formula}} 14 -1. {{formula}}f(x)=x^2-14x+22{{/formula}} 15 -1. {{formula}}f(x)=x^2-7x+12{{/formula}} 16 -1. {{formula}}f(x)=x^2-8x+13{{/formula}} 17 -1. {{formula}}f(x)=x^2+6x-4{{/formula}} 18 -1. {{formula}}f(x)=2x^2-4x-5 {{/formula}} 19 - 20 -))) 21 -1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 22 -//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 23 -{{/aufgabe}} 24 - 25 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 26 -IN PROGRESS 27 -(% class="abc" %) 28 28 1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 29 29 (% class="border slim" %) 30 30 | |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 31 -|{{formula}}y=\square (x-1)(x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in Koo rSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}8 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 32 32 | |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 33 33 34 34 ))) ... ... @@ -45,8 +45,7 @@ 45 45 ))) 46 46 {{/aufgabe}} 47 47 48 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 49 -IN PROGRESS 25 +{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 50 50 In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 51 51 (% class="border slim" %) 52 52 |Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} ... ... @@ -54,22 +54,39 @@ 54 54 |Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 55 55 |Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 56 56 33 +Die //Normalparabel// ist Funktionsgraph der quadratischen Potenzfunktion mit {{formula}}y=x^2{{/formula}}. Die kanonischen //Transformationen// (Spiegelung, Streckung, Verschiebung jeweils bezogen auf die orientierten Koordinatenachsen; vgl. Merkhilfe, S. 4) der Normalparabel liefern weitere Parabeln als Funktionsgraphen mit Parabelgleichungen in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine Linearkombination der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgen hier dem Darstellungswechsel nach //Po-Shen Loh//. 34 + 35 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 36 +(% class="border slim" %) 37 +|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 38 + 39 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 40 +(% class="border slim" %) 41 +|[[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] {{formula}}\quad{{/formula}} |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] 42 +|(Video 27:00)|(Video 33:11) 43 + 44 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 45 + 57 57 (% class="abc" %) 58 -1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}} 59 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen. 60 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen. 61 -1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon. 47 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. Folge in Vorgehen und Darstellung obigen Beispielen (dem konkreten und dem allgemeinen). 48 +1. {{formula}}y=x^2-7x+12{{/formula}} 49 +1. {{formula}}y=x^2-14x+24{{/formula}} 50 +1. {{formula}}y=x^2-8x+13{{/formula}} 51 +1. {{formula}}y=x^2+6x-4{{/formula}} 52 +1. {{formula}}y=2x^2-4x-5 {{/formula}} 53 +1. {{formula}}y=3x^2-7x+12{{/formula}} 62 62 63 63 ))) 64 -1. ((( Erläutere,inwiefern {{formula}}\ldots{{/formula}}65 - 1. {{formula}}\ldots{{/formula}}die //Hauptform// unddie //Produktform// zwei Spezialfälle der/Punkt-Steigungs-Form// sind.66 - 1. {{formula}}\ldots{{/formula}}nurdie//Allgemeine Form// diese Bezeichnung mit Rechtträgt; vgl. dazu a).67 - 56 +1. (((Begründe, dass gilt: 57 +i. {{formula}}\frac{b}{a}=p{{/formula}} und {{formula}}\frac{c}{a}=q{{/formula}} 58 +ii. {{formula}}2x_S=x_1+x_2=-p{{/formula}} und {{formula}}x_1\cdot x_2=q{{/formula}} 59 +iii. {{formula}}x_S=\frac{x_1+x_2}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}} 68 68 ))) 69 -1. Berechne aus den Parametern {{formula}}x_0, y_0{{/formula}} der Achsenabschnittsform die Steigung {{formula}}m{{/formula}}. 61 +1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 62 +1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 63 +//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 70 70 {{/aufgabe}} 71 71 72 - 73 73 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 74 74 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 75 75