Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 161.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:58
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 157.2
bearbeitet von Martin Rathgeb
am 2025/01/07 00:36
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,35 +1,11 @@
1 1  {{seiteninhalt/}}
2 2  
3 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}}
4 -(% class="abc" %)
5 -1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken.
3 +{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}}
4 +//Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze.
6 6  (% class="border slim" %)
7 -| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} |
8 -|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
9 -| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} |
10 -
11 -)))
12 -1. (((Nenne die Werte der charakteristischen Größen der Parabel:
13 -1. (((//Lage//.
14 -i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel
15 -ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}}
16 -iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}}
17 -)))
18 -1. (((//Kovariation//.
19 -i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}}
20 -ii. Krümmung {{formula}}a{{/formula}}
21 -)))
22 -)))
23 -{{/aufgabe}}
24 -
25 -{{aufgabe id="Darstellungswechsel nach Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}}
26 -Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefern Funktionsgraphen mit Parabelgleichung in Scheitelform. Ausmultiplizieren liefert die zugehörige Hauptform, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur Produktform ist schwieriger.
27 -
28 -//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze.
29 -(% class="border slim" %)
30 30  |[[image:Po-ShenLoh_Quadratic.png||width="600px"]]
31 31  
32 -//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor.
8 +//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor.
33 33  (% class="border slim" %)
34 34  |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}
35 35  
... ... @@ -49,6 +49,28 @@
49 49  //Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet.
50 50  {{/aufgabe}}
51 51  
28 +{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}}
29 +(% class="abc" %)
30 +1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken.
31 +(% class="border slim" %)
32 +| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} |
33 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
34 +| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} |
35 +
36 +)))
37 +1. (((Nenne die Werte der charakteristischen Größen der Parabel:
38 +1. (((//Lage//.
39 +i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel
40 +ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}}
41 +iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}}
42 +)))
43 +1. (((//Kovariation//.
44 +i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}}
45 +ii. Krümmung {{formula}}a{{/formula}}
46 +)))
47 +)))
48 +{{/aufgabe}}
49 +
52 52  {{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
53 53  IN PROGRESS
54 54  In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3.