Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 175.1
bearbeitet von Martin Rathgeb
am 2025/01/07 12:29
am 2025/01/07 12:29
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 173.1
bearbeitet von Martin Rathgeb
am 2025/01/07 12:22
am 2025/01/07 12:22
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -30,6 +30,8 @@ 30 30 |Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 31 31 |Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 32 33 +Die //Normalparabel// ist Funktionsgraph der quadratischen Potenzfunktion mit {{formula}}y=x^2{{/formula}}. Die kanonischen //Transformationen// (Spiegelung, Streckung, Verschiebung jeweils bezogen auf die orientierten Koordinatenachsen; vgl. Merkhilfe, S. 4) der Normalparabel liefern weitere Parabeln als Funktionsgraphen mit Parabelgleichungen in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine Linearkombination der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgen hier dem Darstellungswechsel nach //Po-Shen Loh//. 34 + 33 33 //Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 34 34 (% class="border slim" %) 35 35 |[[image:Po-ShenLoh_Quadratic.png||width="600px"]] ... ... @@ -39,6 +39,8 @@ 39 39 |[[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] {{formula}}\quad{{/formula}} |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] 40 40 |(Video 27:00)|(Video 33:11) 41 41 44 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 45 + 42 42 (% class="abc" %) 43 43 1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. Folge in Vorgehen und Darstellung obigen Beispielen (dem konkreten und dem allgemeinen). 44 44 1. {{formula}}y=x^2-7x+12{{/formula}} ... ... @@ -52,13 +52,11 @@ 52 52 1. (((Begründe, dass gilt: 53 53 i. {{formula}}\frac{b}{a}=p{{/formula}} und {{formula}}\frac{c}{a}=q{{/formula}} 54 54 ii. {{formula}}2x_S=x_1+x_2=-p{{/formula}} und {{formula}}x_1\cdot x_2=q{{/formula}} 55 -iii. {{formula}}x_S=\frac{x_1+x_2}{2} =\frac{-p}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}}59 +iii. {{formula}}x_S=\frac{x_1+x_2}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}} 56 56 ))) 57 57 1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 58 58 1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 59 59 //Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 60 -Die //Normalparabel// ist Funktionsgraph der quadratischen Potenzfunktion mit {{formula}}y=x^2{{/formula}}. Die kanonischen //Transformationen// (Spiegelung, Streckung, Verschiebung jeweils bezogen auf die orientierten Koordinatenachsen; vgl. Merkhilfe, S. 4) der Normalparabel liefern weitere Parabeln als Funktionsgraphen mit Parabelgleichungen in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine Linearkombination der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgten hier dem Darstellungswechsel nach //Po-Shen Loh//. 61 -Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 62 62 {{/aufgabe}} 63 63 64 64 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}}