Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 178.1
bearbeitet von Martin Rathgeb
am 2025/01/07 20:32
am 2025/01/07 20:32
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 169.1
bearbeitet von Martin Rathgeb
am 2025/01/07 01:39
am 2025/01/07 01:39
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -25,33 +25,13 @@ 25 25 {{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 26 26 In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 27 27 (% class="border slim" %) 28 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 29 29 |Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 29 +|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 30 30 |Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 31 31 |Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 32 33 - Es gelten folgendeBeziehungenzwischen den Parametern, wobei33 +Die //Normalparabel// ist Funktionsgraph der quadratischen Potenzfunktion mit {{formula}}y=x^2{{/formula}}. Die kanonischen //Transformationen// (Spiegelung, Streckung, Verschiebung jeweils bezogen auf die orientierten Koordinatenachsen; vgl. Merkhilfe, S. 4) der Normalparabel liefern weitere Parabeln als Funktionsgraphen mit Parabelgleichungen in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine Linearkombination der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgen hier dem Darstellungswechsel nach //Po-Shen Loh//. 34 34 35 -\[ 36 -\begin{array}{|c|l|l|l|} 37 -\hline 38 -\textbf{Nr.} & \textbf{Von} & \textbf{Zu} & \textbf{Beziehungen} \\ 39 -\hline 40 -1 & \text{Scheitelform} & \text{pq-Form} & p = -2x_S, \, q = x_S^2 + y_S^* \\ 41 -\hline 42 -2 & \text{pq-Form} & \text{Scheitelform} & x_S = -\frac{p}{2}, \, y_S^* = -\frac{p^2}{4} + q \\ 43 -\hline 44 -3 & \text{Scheitelform} & \text{Produktform} & x_1 = x_S - \sqrt{-y_S^*}, \, x_2 = x_S + \sqrt{-y_S^*} \\ 45 -\hline 46 -4 & \text{pq-Form} & \text{Produktform} & x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \, x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q} \\ 47 -\hline 48 -5 & \text{Produktform} & \text{pq-Form} & p = -(x_1 + x_2), \, q = x_1 x_2 \\ 49 -\hline 50 -6 & \text{Produktform} & \text{Scheitelform} & x_S = \frac{x_1 + x_2}{2}, \, y_S^* = -\frac{(x_2 - x_1)^2}{4} \\ 51 -\hline 52 -\end{array} 53 -\] 54 - 55 55 //Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 56 56 (% class="border slim" %) 57 57 |[[image:Po-ShenLoh_Quadratic.png||width="600px"]] ... ... @@ -58,23 +58,24 @@ 58 58 59 59 //Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 60 60 (% class="border slim" %) 61 -|[[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] {{formula}}\quad{{/formula}} |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] 62 -|(Video 27:00)|(Video 33:11) 41 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 63 63 43 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 44 + 64 64 (% class="abc" %) 65 65 1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. Folge in Vorgehen und Darstellung obigen Beispielen (dem konkreten und dem allgemeinen). 66 66 1. {{formula}}y=x^2-7x+12{{/formula}} 67 -1. {{formula}}y=x^2-14x+24{{/formula}} 48 +1. {{formula}}y=x^2-14x+22{{/formula}} 49 +1. {{formula}}y=x^2-7x+12{{/formula}} 68 68 1. {{formula}}y=x^2-8x+13{{/formula}} 69 69 1. {{formula}}y=x^2+6x-4{{/formula}} 70 70 1. {{formula}}y=2x^2-4x-5 {{/formula}} 71 -1. {{formula}}y=3x^2-7x+12{{/formula}} 72 72 73 73 ))) 74 74 1. (((Begründe, dass gilt: 75 75 i. {{formula}}\frac{b}{a}=p{{/formula}} und {{formula}}\frac{c}{a}=q{{/formula}} 76 76 ii. {{formula}}2x_S=x_1+x_2=-p{{/formula}} und {{formula}}x_1\cdot x_2=q{{/formula}} 77 -iii. {{formula}}x_S=\frac{x_1+x_2}{2} =\frac{-p}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}}58 +iii. {{formula}}x_S=\frac{x_1+x_2}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}} 78 78 ))) 79 79 1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 80 80 1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert.