Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 187.1
bearbeitet von Martin Rathgeb
am 2025/01/07 21:35
am 2025/01/07 21:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 108.1
bearbeitet von Martin Rathgeb
am 2025/01/05 14:49
am 2025/01/05 14:49
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 3 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,61 +1,5 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4, K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}} 4 -(% class="abc" %) 5 -1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 6 -(% class="border slim" %) 7 -| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 8 -|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 9 -| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 10 - 11 -))) 12 -1. (((Nenne die Werte der charakteristischen Größen der Parabel: 13 -1. (((//Lage//. 14 -i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel 15 -ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}} 16 -iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 17 -))) 18 -1. (((//Kovariation//. 19 -i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}} 20 -ii. Krümmung {{formula}}a{{/formula}} 21 -))) 22 -))) 23 -{{/aufgabe}} 24 - 25 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 26 -In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 27 -(% class="border" %) 28 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 29 -|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 30 -|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 31 -|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 - 33 -(% class="abc" %) 34 -1. //Formeln entdecken//. Untersuche die Gleichungsformen im Hinblick auf Gemeinsamkeiten, Unterschiede und Zusammenhänge; instruktiv ist der //Koeffizientenvergleich// mit der "Gestreckten Normalform". 35 -Folgende Tabelle gibt einen Überblick über Beziehungen zwischen den Parametern, wobei die Kurz-Bezeichnung {{formula}}}y_S^*=\frac{y_S^*}{a}{{/formula}} verwendet wurde. 36 -(% class="border" %) 37 -|Nr. |Von |Zu |Beziehungen 38 -|1 |Scheitelform |pq-Form |{{formula}}p = -2x_S, \, q = x_S^2 + y_S^*{{/formula}} 39 -|2 |pq-Form |Scheitelform |{{formula}}x_S = -\frac{p}{2}, \, y_S^* = -\frac{p^2}{4} + q{{/formula}} 40 -|3 |Scheitelform |Produktform |{{formula}}x_1 = x_S - \sqrt{-y_S^*}, \, x_2 = x_S + \sqrt{-y_S^*}{{/formula}} 41 -|4 |pq-Form |Produktform |{{formula}}x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \, x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}{{/formula}} 42 -|5 |Produktform |pq-Form |{{formula}}p = -(x_1 + x_2), \, q = x_1 x_2{{/formula}} 43 -|6 |Produktform |Scheitelform |{{formula}}x_S = \frac{x_1 + x_2}{2}, \, y_S^* = -\frac{(x_2 - x_1)^2}{4}{{/formula}} 44 -1. //Formeln anwenden//. Ergänze die Leerstellen in folgender Tabelle. 45 -(% class="border" %) 46 -|Nr. |Hauptform |Scheitelform |Produktform 47 -|1 |{{formula}}y = x^2 - 4x + 3{{/formula}} | | 48 -|2 | |{{formula}}y = (x - 1)^2 + 4{{/formula}} | 49 -|3 | | |{{formula}}y = (x + 2)(x + 2){{/formula}} 50 -|4 |{{formula}}y = -(x^2 - 4x + 1){{/formula}} | | 51 -|5 | |{{formula}}y = -\pi(x - \pi)^2{{/formula}} | 52 -|6 | | |{{formula}}y = -(x + 1 - \sqrt{2})(x + 1 + \sqrt{2}){{/formula}} 53 -|7 |{{formula}}y = 2(x^2 + 2x + 5){{/formula}} | | 54 -|8 | |{{formula}}y = -\frac{3}{2}(x - 2)^2{{/formula}} | 55 -|9 | | |{{formula}}y = \sqrt{2}(x - 2)(x - 3){{/formula}} 56 -1. //Formeln begründen//. Zeige die Beziehungen zwischen den Parametern; vgl. obige Tabelle. 57 -{{/aufgabe}} 58 - 59 59 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 60 60 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 61 61 ... ... @@ -122,14 +122,14 @@ 122 122 Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben der Verschiebung und der Streckung in Richtung einer Koordinatenachse bzw. der Spiegelung an einer Koordinatenachse gibt es eine weitere besondere Transformation, nämlich die //Spiegelung an der ersten Winkelhalbierenden//, das ist die Gerade mit der Gleichung {{formula}}y=x{{/formula}}. Diese Spiegelung bewirkt den Koordinatentausch {{formula}}(x|y)\mapsto (y|x){{/formula}}, d.h., die Umkehrung {{formula}}y\mapsto x{{/formula}} der Zuordnung {{formula}}x\mapsto y{{/formula}}. 123 123 Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}, ein Funktionsgraph) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}}, kein Funktionsgraph); das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}, ein Funktionsgraph) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen (kein Funktionsgraph). Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst die Gleichung {{formula}}y=x^2{{/formula}} nach {{formula}}x{{/formula}} auf und tauscht dann in der erhaltenen Gleichung {{formula}}x=\pm \sqrt{y}{{/formula}} noch die Variablen gegeneinander aus ({{formula}}y=\pm \sqrt{x}{{/formula}}). 124 124 125 -Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Funktionsgraphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.69 +Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}. 126 126 [[image:Einheitsuebergreifend2.png||width="400px"]] 127 127 128 128 (% class="abc" %) 129 -1. Löse die Gleichung enjeweils nach{{formula}}x{{/formula}}auf; du erhältst damit für{{formula}}x{{/formula}}einen Funktionsterm{{formula}}x(y){{/formula}}in{{formula}}y{{/formula}}.130 -1. Führen den in a) berechnetenTermen {{formula}}x(y){{/formula}}den Variablentauschdurch, zeichne dieGraphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.131 -1. Die in a) berechneten Terme {{formula}}x(y){{/formula}}sind insbesondereinMonotonieintervallenvon{{formula}}f{{/formula}}FunktionstermevonUmkehrfunktionen {{formula}}f^{-1}{{/formula}}. Untersuchedie Ausdrücke{{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für{{formula}}y{{/formula}}einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.132 -1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen {{formula}}f{{/formula}}(z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).73 +1. Löse die Gleichung jeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//. 74 +1. Zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen. 75 +1. Die in a) berechneten Terme sind die Funktionsterme von Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}) von Funktionen {{formula}}f{{/formula}}. Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für //y// einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt. 76 +1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen //f// (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b). 133 133 {{/aufgabe}} 134 134 135 135 {{matrix/}}
- Po-ShenLoh_Quadratic.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -98.4 KB - Inhalt
- Po-ShenLoh_Quadratic_Example.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -828.1 KB - Inhalt
- Po-ShenLoh_Quadratic_Proof.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -612.4 KB - Inhalt