Wiki-Quellcode von Lösung Gleichungen grafisch lösen
Version 15.1 von Martin Stern am 2024/10/15 09:43
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | a) | ||
2 | |||
3 | b) | ||
4 | |||
5 | c) Gleichsetzen der Funktionsterme von f und g: | ||
6 | {{formula}}f(x)=g(x){{/formula}} // | ||
7 | {{formula}}\sqrt{-x+1}=-\sqrt{x+5}+3{{/formula}} // | ||
8 | {{formula}}-x+1=x+5-2\cdot 3\cdot\sqrt{x+5}+9{{/formula}} // | ||
9 | {{formula}}-2x-13=-6\sqrt{x+5}{{/formula}} // | ||
10 | {{formula}}(-2x-13)^2=36(x+5){{/formula}} // | ||
11 | {{formula}}4x^2+52x+169=36x+180{{/formula}} // | ||
12 | {{formula}}4x^2+16x-11=0{{/formula}} // | ||
13 | {{formula}}x_{1,2}=\frac{-16\pm\sqrt{16^2-4\cdot4\cdot(-11)}}{8}{{/formula}} // | ||
14 | {{formula}}x_{1,2}=\frac{-16\pm\sqrt{432}}{8}{{/formula}} // | ||
15 | {{formula}}x_{1,2}=-2\pm\frac{3}{2}\sqrt{3}{{/formula}} // | ||
16 | |||
17 | {{formula}}f(x_1)=g(x_1)\approx 0,634{{/formula}} // | ||
18 | {{formula}}f(x_2)=g(x_2)\approx 2,366{{/formula}} // | ||
19 | |||
20 | Die beiden Funktionsgraphen {{formula}}K_f{{/formula}} und {{formula}}K_g{{/formula}} schneiden sich in {{formula}}S_1(-2+\frac{3}{2}\sqrt{3}|0,634){{/formula}} und {{formula}}S_2(-2-\frac{3}{2}\sqrt{3}|2,366){{/formula}}. |