Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 111.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:23
am 2024/10/14 21:23
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 136.1
bearbeitet von Martin Rathgeb
am 2024/10/14 22:06
am 2024/10/14 22:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,47 +11,53 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 + 14 14 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 -Ergänze nachfolgende Wertetabelle zu folgender Funktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}}. Erkennst du eine Symmetrie? 16 +(% style="list-style: alphastyle" %) 17 +1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle. 18 +((((% class="border" %) 19 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 20 +|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 21 +|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 22 +))) 23 +1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle. 24 +((((% class="border" %) 25 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 26 +|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 27 +|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 28 +))) 29 +1. Erkennst du eine Symmetrie? 30 +{{/aufgabe}} 16 16 32 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 33 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}}. Untersuche die Funktion im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür folgende Wertetabellen. Erkennst du eine Symmetrie? 34 + 17 17 (% style="list-style: alphastyle" %) 18 -1. Randverhalten: Globalverhalten - Verhalten im Unendlichen 19 -((( 36 +1. Randverhalten: Verhalten im Unendlichen 20 20 1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 21 -(% class="border" %) 22 -|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}1000{{/formula}}| {{formula}}1000 0{{/formula}}23 -|={{formula}}f(x){{/formula}}||||| 24 - 38 +((((% class="border" %) 39 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}} 40 +|={{formula}}f(x){{/formula}}||||||| 41 +))) 25 25 1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 26 -(% class="border" %) 27 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-1000 0{{/formula}}28 -|={{formula}}f(x){{/formula}}||||| 43 +((((% class="border" %) 44 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}} 45 +|={{formula}}f(x){{/formula}}||||||| 29 29 ))) 30 30 31 31 1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 32 -((( 33 -1.1 Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 34 -(% class="border" %) 35 -|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 36 -|={{formula}}f(x){{/formula}}||||| 37 - 38 -1.1 Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 39 -(% class="border" %) 40 -|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 41 -|={{formula}}f(x){{/formula}}||||| 49 +1.1 Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 50 +((((% class="border" %) 51 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}} 52 +|={{formula}}f(x){{/formula}}||||||| 42 42 ))) 54 +1.1 Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 55 +((((% class="border" %) 56 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}} 57 +|={{formula}}f(x){{/formula}}||||||| 43 43 ))) 44 44 {{/aufgabe}} 45 45 46 -{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 47 -Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 48 - 49 -(% class="border" %) 50 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 51 -|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 52 -|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 53 -{{/aufgabe}} 54 - 55 55 {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 56 56 Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 57 57 {{/aufgabe}}