Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 148.1
bearbeitet von Martin Rathgeb
am 2024/10/14 23:01
am 2024/10/14 23:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 168.1
bearbeitet von Martin Rathgeb
am 2024/10/15 00:12
am 2024/10/15 00:12
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -12,61 +12,68 @@ 12 12 Stetigkeit 13 13 14 14 15 -{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 16 16 (% style="list-style: alphastyle" %) 17 -1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle. 17 +1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (soweit wie möglich). 18 18 ((((% class="border" %) 19 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10||||||||| 20 -|={{formula}}f(x){{/formula}}||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000 19 +|={{formula}}x{{/formula}}|-1|| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10||||||||| 20 +|={{formula}}f(x){{/formula}}||-1||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000 21 21 ))) 22 -1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle. 22 +1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle (soweit wie möglich). 23 23 ((((% class="border" %) 24 -|={{formula}}x{{/formula}}|0|1|4|9|16|25|36|49|64|81|100||||||||| 25 -|={{formula}}g(x){{/formula}}||||||||||||20|30|40|50|60|70|80|90|100 24 +|={{formula}}x{{/formula}}|-1||0|1|4|9|16|25|36|49|64|81|100||||||||| 25 +|={{formula}}g(x){{/formula}}||-1||||||||||||20|30|40|50|60|70|80|90|100 26 26 ))) 27 27 1. Erkennst du eine Symmetrie? 28 28 1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme 29 +((( 29 29 1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 30 -1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(y){{/formula}}. 31 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Untersuche 31 +1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 32 +))) 33 +1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche 34 +((( 32 32 1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 33 -1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(y){{/formula}}. 36 +1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 37 +))) 34 34 {{/aufgabe}} 35 35 36 -{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 37 - Gegebenistdie Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}}.Untersuche die Funktion im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür folgende Wertetabellen.Erkennst du eine Symmetrie?40 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 41 +Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen. 38 38 39 39 (% style="list-style: alphastyle" %) 40 40 1. Randverhalten: Verhalten im Unendlichen 41 41 1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 42 42 ((((% class="border" %) 43 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}} 44 -|={{formula}}f(x){{/formula}}||||||| 47 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}}| 48 +|={{formula}}f(x){{/formula}}||||||||0 45 45 ))) 46 46 1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 47 47 ((((% class="border" %) 48 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}} 49 -|={{formula}}f(x){{/formula}}||||||| 52 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}}| 53 +|={{formula}}f(x){{/formula}}||||||||0 50 50 ))) 51 51 52 52 1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 53 53 1.1 Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 54 54 ((((% class="border" %) 55 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}} 56 -|={{formula}}f(x){{/formula}}||||||| 59 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}}|0| 60 +|={{formula}}f(x){{/formula}}|||||||| 57 57 ))) 58 58 1.1 Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 59 59 ((((% class="border" %) 60 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}} 61 -|={{formula}}f(x){{/formula}}||||||| 64 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}}|0 65 +|={{formula}}f(x){{/formula}}|||||||| 62 62 ))) 67 +1. Erkennst du eine Symmetrie? 68 +1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 69 +1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}. 63 63 {{/aufgabe}} 64 64 65 -{{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 72 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 66 66 Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 67 67 {{/aufgabe}} 68 68 69 -{{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}76 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 70 70 Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 71 71 {{/aufgabe}} 72 72 ... ... @@ -104,7 +104,7 @@ 104 104 **Zusatzaufgabe:** Finde möglichst einfache/ komplexe Lösungen. 105 105 {{/aufgabe}} 106 106 107 -{{aufgabe id="Stetigkeit" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 114 +{{aufgabe id="Stetigkeit - Anschaulische Einführung (Gegenlese)" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 108 108 Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich nicht stetig, weil man ihren Graphen nicht ohne Absetzen zeichnen kann. Nimm dazu Stellung! 109 109 {{/aufgabe}} 110 110 ... ... @@ -116,3 +116,7 @@ 116 116 ⭘ schließt ihn aus))) 117 117 {{/aufgabe}} 118 118 126 +{{aufgabe id="Umkehrung" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 127 +Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung! 128 +{{/aufgabe}} 129 +