Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 191.3
bearbeitet von Holger Engels
am 2024/10/15 11:39
am 2024/10/15 11:39
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 198.10
bearbeitet von Holger Engels
am 2024/10/15 20:38
am 2024/10/15 20:38
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -5,13 +5,7 @@ 5 5 [[Kompetenzen.K1]] [[Kompetenzen.K4]] Ich kann die Eigenschaften von Potenzfunktionen ausgehend von den Funktionsgraphen erläutern 6 6 [[Kompetenzen.K1]] Ich kann den Stetigkeitsbegriff anschaulich anhand der Graphen von Potenzfunktionen erläutern 7 7 8 -Verhalten +/- oo 9 -Verhalten nahe Definitionslücke 10 -Asymptoten 11 -Symmetrie 12 -Stetigkeit 13 - 14 -{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 8 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="7" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 15 (% style="list-style: alphastyle" %) 16 16 1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). 17 17 ((((% class="border" style="width:100%" %) ... ... @@ -27,7 +27,7 @@ 27 27 1. Beschreibe das Randverhalten der Funktionen und nenne ihre Wertemengen. 28 28 {{/aufgabe}} 29 29 30 -{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 24 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="9" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 31 31 Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen (wo möglich). 32 32 33 33 (% style="list-style: alphastyle" %) ... ... @@ -55,18 +55,9 @@ 55 55 ))) 56 56 1. Erkennst du eine Symmetrie? 57 57 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 58 -1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}. 59 59 {{/aufgabe}} 60 60 61 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 62 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 63 - 64 -{{lehrende}} 65 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Layout soll sich durchsetzen. 66 -{{/lehrende}} 67 -{{/aufgabe}} 68 - 69 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 54 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 70 70 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}. 71 71 (% style="list-style: alphastyle" %) 72 72 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -74,29 +74,31 @@ 74 74 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 75 75 {{/aufgabe}} 76 76 77 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 62 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 78 78 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}}. 79 79 (% style="list-style: alphastyle" %) 80 80 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. 81 81 1. Skizziere jeweils die Graphen der Funktionen ggf. mit ihren Asymptoten; benutze dafür ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. 82 82 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 83 - 84 -{{lehrende}} 85 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere soll sich durchsetzen. 86 -{{/lehrende}} 87 87 {{/aufgabe}} 88 88 89 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 90 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 91 -{{/aufgabe}} 70 +{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K2,K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 71 +**unfertig!** 92 92 93 -{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 94 94 (% style="list-style: alphastyle" start="5" %) 95 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 74 +1. (((Gegeben seien die Funktionen //f// und //g// mit {{formula}}f(x) = x^2{{/formula}} und {{formula}}g(x) = \sqrt{2}{{/formula}}. Fülle jeweils die Lücken aus: 75 +{{formula}}3\mapsto{\text{g}}\square\xmapsto{g}\square{{/formula}} 76 + 77 +{{formula}} 78 +\begin{document} 79 + $\xmapsto{P}$ 80 +\end{document} 81 +{{/formula}} 82 +))) 96 96 1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 97 97 {{/aufgabe}} 98 98 99 -{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 86 +{{aufgabe id="D und W" afb="I" kompetenzen="K4" zeit="8" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 100 100 Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten: 101 101 102 102 (% style="list-style: alphastyle" %) ... ... @@ -104,16 +104,17 @@ 104 104 1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}} 105 105 {{/aufgabe}} 106 106 107 -{{aufgabe id=" Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}108 - Gegebenistdie Funktionsgleichung {{formula}}f(x)=\frac{-3}{x-2}+4{{/formula}}.94 +{{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" zeit="5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 95 +Untersuche die folgenden Funktionen rechnerisch auf Symmetrie zum Ursprung und Symmetrie zur y-Achse. 109 109 110 110 (% style="list-style: alphastyle" %) 111 -1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an. 112 -1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote. 113 -1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist. 98 +1. {{formula}}f(x)=\frac{5}{x}{{/formula}} 99 +1. {{formula}}f(x)=\frac{5}{x}+1{{/formula}} 100 +1. {{formula}}f(x)=\frac{5}{x^2}{{/formula}} 101 +1. {{formula}}f(x)=\frac{5}{x^2}+1{{/formula}} 114 114 {{/aufgabe}} 115 115 116 -{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 104 +{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" zeit="10" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 117 117 [[image:venn.svg|| width="500" style="float: left"]] 118 118 Gib für jedes Feld **A** .. **H** eine passende Funktion {{formula}}f(x)=a\cdot x^n{{/formula}} an. Sollte ein Feld nicht gefüllt werden können, begründe bitte, warum es nicht geht. 119 119 ... ... @@ -130,11 +130,11 @@ 130 130 **Zusatzaufgabe:** Finde möglichst einfache/ komplexe Lösungen. 131 131 {{/aufgabe}} 132 132 133 -{{aufgabe id="Stetigkeit - Anschaulische Einführung (Gegenlese)" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}121 +{{aufgabe id="Stetigkeit - Anschaulische Einführung" afb="II" kompetenzen="K1,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="3"}} 134 134 Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich nicht stetig, weil man ihren Graphen nicht ohne Absetzen zeichnen kann. Nimm dazu Stellung! 135 135 {{/aufgabe}} 136 136 137 -{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 125 +{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="K4,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 138 138 Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten Bereich stetig ist! 139 139 [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]] 140 140 [[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %) Hinweis: ... ... @@ -142,7 +142,13 @@ 142 142 ⭘ schließt ihn aus 143 143 {{/aufgabe}} 144 144 145 -{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5" niveau=p}} 146 -Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung! 133 +{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="7" niveau="p"}} 134 +Sascha formuliert die beiden nachfolgenden Behauptungen. Nimm dazu Stellung! 135 +(% style="list-style: alphastyle" %) 136 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 137 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 147 147 {{/aufgabe}} 148 148 140 +{{lehrende}}K3 wird im Bildungsplan nicht genannt, wird aber bei Übergreifend aufgegriffen.{{/lehrende}} 141 + 142 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="3"/}}