Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 56.1
bearbeitet von Holger Engels
am 2024/10/14 15:13
am 2024/10/14 15:13
Änderungskommentar:
Neuen Anhang Stetigkeit.ggb hochladen
Auf Version 148.1
bearbeitet von Martin Rathgeb
am 2024/10/14 23:01
am 2024/10/14 23:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -11,28 +11,80 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 -{{aufgabe id="Erkunden: Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitions- und den maximalen Wertebereich an und skizziere die Graphen der Funktionen in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. 16 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 14 + 15 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 16 +(% style="list-style: alphastyle" %) 17 +1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle. 18 +((((% class="border" %) 19 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10||||||||| 20 +|={{formula}}f(x){{/formula}}||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000 21 +))) 22 +1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle. 23 +((((% class="border" %) 24 +|={{formula}}x{{/formula}}|0|1|4|9|16|25|36|49|64|81|100||||||||| 25 +|={{formula}}g(x){{/formula}}||||||||||||20|30|40|50|60|70|80|90|100 26 +))) 27 +1. Erkennst du eine Symmetrie? 28 +1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme 29 +1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 30 +1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(y){{/formula}}. 31 +1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Untersuche 32 +1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 33 +1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(y){{/formula}}. 17 17 {{/aufgabe}} 18 18 19 -{{aufgabe id="Erkunden: Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 20 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitions- und den maximalen Wertebereich an und skizziere die Graphen der Funktionen in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. 21 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 36 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 37 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}}. Untersuche die Funktion im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür folgende Wertetabellen. Erkennst du eine Symmetrie? 38 + 39 +(% style="list-style: alphastyle" %) 40 +1. Randverhalten: Verhalten im Unendlichen 41 +1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 42 +((((% class="border" %) 43 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}} 44 +|={{formula}}f(x){{/formula}}||||||| 45 +))) 46 +1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 47 +((((% class="border" %) 48 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}} 49 +|={{formula}}f(x){{/formula}}||||||| 50 +))) 51 + 52 +1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 53 +1.1 Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 54 +((((% class="border" %) 55 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}} 56 +|={{formula}}f(x){{/formula}}||||||| 57 +))) 58 +1.1 Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 59 +((((% class="border" %) 60 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}} 61 +|={{formula}}f(x){{/formula}}||||||| 62 +))) 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA"}} 25 -Gib jeweils den Definitions- und den Wertebereich an: 65 +{{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 66 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 67 +{{/aufgabe}} 68 + 69 +{{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 70 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 71 +{{/aufgabe}} 72 + 73 +{{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 74 +Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten: 75 + 76 +(% style="list-style: alphastyle" %) 26 26 1. {{formula}}f(x)=\frac{1}{x-2}+1{{/formula}} 27 27 1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}} 28 28 {{/aufgabe}} 29 29 30 -{{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle=" ??" cc="BY-SA"}}31 - Bestimmezu denuntengenanntenFunktionenden (1) Globalverlauf, die(2)Symmetrie,den (3) Definitions-und den (4) Wertebereichund gegebenenfalls (5) waagerechte und senkrechte Asymptoten.81 +{{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 82 +Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}. 32 32 33 33 (% style="list-style: alphastyle" %) 34 -1. Das Schaubild der Funktion g ist eine Parabel vierter Ordnung mit dem Scheitel {{formula}}S(-2| 3){{/formula}}, die um den Streckungsfaktor {{formula}}\frac{1}{2}{{/formula}} in y-Richtung gestreckt wurde. 35 -1. Die Funktion h ist eine Potenzfunktion mit {{formula}}h(x) = \frac{-3}{x-2}+4{{/formula}} 85 +1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an. 86 +1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote. 87 +1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist. 36 36 {{/aufgabe}} 37 37 38 38 {{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}