Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 65.1
bearbeitet von Martin Rathgeb
am 2024/10/14 16:27
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 62.1
bearbeitet von Martin Rathgeb
am 2024/10/14 15:53
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -12,11 +12,13 @@
12 12  Stetigkeit
13 13  
14 14  {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
15 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
15 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht.
16 +Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
16 16  {{/aufgabe}}
17 17  
18 18  {{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
19 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
20 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht.
21 +Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
20 20  {{/aufgabe}}
21 21  
22 22  {{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
... ... @@ -28,11 +28,11 @@
28 28  {{/aufgabe}}
29 29  
30 30  {{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="??" cc="BY-SA"}}
31 -Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}.
33 +Bestimme zu den unten genannten Funktionen (1) den maximalen Definitionsbereich mit (2) zugehörigem Wertebereich, (3) den Globalverlauf, (4) die Symmetrie und gegebenenfalls (5) waagerechte und senkrechte Asymptoten.
32 32  
33 33  (% style="list-style: alphastyle" %)
34 -1. Gib den maximalen Definitionsbereich mit (2) zugehörigem Wertebereich, (3) den Globalverlauf und (4) waagerechte sowie senkrechte Asymptoten an.
35 -2. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist.
36 +1. Das Schaubild der Funktion g ist eine Parabel vierter Ordnung mit dem Scheitel {{formula}}S(-2| 3){{/formula}}, die um den Streckungsfaktor {{formula}}\frac{1}{2}{{/formula}} in y-Richtung gestreckt wurde.
37 +1. Die Funktion h ist eine transformierte Potenzfunktion mit {{formula}}h(x) = \frac{-3}{x-2}+4{{/formula}}.
36 36  {{/aufgabe}}
37 37  
38 38  {{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}