Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 71.1
bearbeitet von Martin Rathgeb
am 2024/10/14 16:55
am 2024/10/14 16:55
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 102.1
bearbeitet von Martin Rathgeb
am 2024/10/14 19:23
am 2024/10/14 19:23
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,6 +11,39 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 +Ergänze nachfolgende Wertetabelle zu folgender Funktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}}. Erkennst du eine Symmetrie? 16 + 17 +(% style="list-style: alphastyle" %) 18 +1. Randverhalten: Verhalten im Unendlichen 19 + 20 +(% style="list-style: alphastyle" %) 21 +1. Verhalten gegen {{formula}}+\infty{{/formula}} (plus Unendlich) 22 +(% class="border" %) 23 +|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}1000{{/formula}}| {{formula}}10000{{/formula}} 24 +|={{formula}}f(x){{/formula}}||||| 25 + 26 +1. Verhalten gegen {{formula}}-\infty{{/formula}} (minus Unendlich) 27 +(% class="border" %) 28 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10000{{/formula}} 29 +|={{formula}}f(x){{/formula}}||||| 30 + 31 +1. Randverhalten: Definitionslücke 32 + 33 +(% class="border" %) 34 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 35 +|={{formula}}f(x){{/formula}}|||| 36 +{{/aufgabe}} 37 + 38 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 39 +Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 40 + 41 +(% class="border" %) 42 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 43 +|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 44 +|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 45 +{{/aufgabe}} 46 + 14 14 {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 15 Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 16 16 {{/aufgabe}}