Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 84.1
bearbeitet von Martin Rathgeb
am 2024/10/14 18:06
am 2024/10/14 18:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 116.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:35
am 2024/10/14 21:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,8 +11,9 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 + 14 14 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 -Ergänze nachfolgende Wertetabelle zu folgende rFunktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie?16 +Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 16 16 17 17 (% class="border" %) 18 18 |={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} ... ... @@ -21,12 +21,34 @@ 21 21 {{/aufgabe}} 22 22 23 23 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 24 - ErgänzenachfolgendeWertetabellezu folgendenFunktionsgleichungen{{formula}}f(x)=x^2{{/formula}} und{{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie?25 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und maximalem Definitionsbereich. Untersuche ihr Randverhalten anhand folgender Wertetabellen. Erkennst du eine Symmetrie? 25 25 27 +(% style="list-style: alphastyle" %) 28 +1. Randverhalten: Verhalten im Unendlichen 29 +((( 30 +1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 26 26 (% class="border" %) 27 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 28 -|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 29 -|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 32 +|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}10^3{{/formula}}| {{formula}}10^6{{/formula}}| {{formula}}10^9{{/formula}} 33 +|={{formula}}f(x){{/formula}}||||||| 34 + 35 +1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 36 +(% class="border" %) 37 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-10^3{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}} 38 +|={{formula}}f(x){{/formula}}||||||| 39 +))) 40 + 41 +1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 42 +((( 43 +1.1 Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 44 +(% class="border" %) 45 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 46 +|={{formula}}f(x){{/formula}}||||| 47 + 48 +1.1 Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 49 +(% class="border" %) 50 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 51 +|={{formula}}f(x){{/formula}}||||| 52 +))) 30 30 {{/aufgabe}} 31 31 32 32 {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}