Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 97.1
bearbeitet von Martin Rathgeb
am 2024/10/14 19:17
am 2024/10/14 19:17
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 117.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:37
am 2024/10/14 21:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,29 +11,44 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 + 14 14 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 -Ergänze nachfolgende Wertetabelle zu folgende rFunktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}}. Erkennst du eine Symmetrie?16 +Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 16 16 18 +(% class="border" %) 19 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 20 +|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 21 +|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 22 +{{/aufgabe}} 23 + 24 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 25 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und maximalem Definitionsbereich. Untersuche ihr Randverhalten anhand folgender Wertetabellen. Erkennst du eine Symmetrie? 26 + 17 17 (% style="list-style: alphastyle" %) 18 18 1. Randverhalten: Verhalten im Unendlichen 19 -{ 29 +((( 30 +1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 20 20 (% class="border" %) 21 -|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 10{{/formula}}| {{formula}}\pm 100{{/formula}}| {{formula}}\pm 1000{{/formula}}| {{formula}}\pm 10000{{/formula}} 22 -|={{formula}}f(x){{/formula}}||||| 23 - } 24 -1. Randverhalten: Definitionslücke 32 +|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}10^3{{/formula}}| {{formula}}10^6{{/formula}}| {{formula}}10^9{{/formula}} 33 +|={{formula}}f(x){{/formula}}||||||| 34 +1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 25 25 (% class="border" %) 36 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-10^3{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}} 37 +|={{formula}}f(x){{/formula}}|||||| 38 +))) 39 + 40 +1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 41 +((( 42 +1.1 Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 43 +(% class="border" %) 26 26 |={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 27 -|={{formula}}f(x){{/formula}}|||| 28 -{{/aufgabe}} 45 +|={{formula}}f(x){{/formula}}||||| 29 29 30 -{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 31 -Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 32 - 47 +1.1 Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 33 33 (% class="border" %) 34 -|={{formula}}x{{/formula}}| 0|1|2|3| 4| 5| 6| 7| 8| 9| 10|16|25| 36| 49| 64| 81| 100| 400| 900|{{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}}35 -|={{formula}}f(x){{/formula}}||||| ||||||||||||||||||36 - |={{formula}}g(x){{/formula}}|||||||||||||||||||||||49 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 50 +|={{formula}}f(x){{/formula}}||||| 51 +))) 37 37 {{/aufgabe}} 38 38 39 39 {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}