Wiki-Quellcode von Lösung Erkunden (eine Potenzfunktion) - Wertetabelle
Version 1.2 von Tina Müller am 2024/10/15 10:36
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen. |
2 | |||
3 | (% style="list-style: alphastyle" %) | ||
4 | 1. (((Randverhalten: Verhalten im Unendlichen | ||
5 | 1) Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) | ||
6 | (% class="border" %) | ||
7 | |={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}}|({{formula}}+10^{+\infty}{{/formula}}) | ||
8 | |={{formula}}f(x){{/formula}}|1|{{formula}}\frac{1}{10}{{/formula}}|{{formula}}\frac{1}{100}{{/formula}}|{{formula}}\frac{1}{1000}{{/formula}}|{{formula}}\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|0 | ||
9 | |||
10 | 2) Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) | ||
11 | (% class="border" %) | ||
12 | |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}}| | ||
![]() |
1.2 | 13 | |={{formula}}f(x){{/formula}}||{{formula}}-1{{/formula}}|{{formula}}-\frac{1}{100}{{/formula}}|{{formula}}-\frac{1}{1000}{{/formula}}|{{formula}}-\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|0 |
![]() |
1.1 | 14 | ))) |
15 | 1. (((Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) | ||
16 | 1) Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) | ||
17 | (% class="border" %) | ||
18 | |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}}|0 | ||
19 | |={{formula}}f(x){{/formula}}|||||||| | ||
20 | |||
21 | 2) Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) | ||
22 | (% class="border" %) | ||
23 | |={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}}|0 | ||
24 | |={{formula}}f(x){{/formula}}|||||||| | ||
25 | ))) | ||
26 | 1. Erkennst du eine Symmetrie? | ||
27 | 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. | ||
28 | 1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}. |