Zuletzt geändert von Holger Engels am 2025/01/19 11:04

Von Version 18.1
bearbeitet von Holger Engels
am 2025/01/19 11:02
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 17.1
bearbeitet von Holger Engels
am 2025/01/19 11:01
Änderungskommentar: Neues Bild Graphen erkunden ungerade.svg hochladen

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,12 +1,13 @@
1 -a) (((Die Funktion {{formula}}f{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (roter Graph).
2 -Die Funktion {{formula}}g{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (blauer Graph).
1 +a) Die Funktion {{formula}}f{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (roter Graph).
2 +Die Funktion {{formula}}g{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}_{+}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}_{+}{{/formula}} (blauer Graph).
3 3  Die Funktion {{formula}}h{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}\setminus\lbrace 0 \rbrace{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}\setminus\lbrace 0 \rbrace{{/formula}} (grüner Graph).
4 -)))
5 -b) (((Die Graphen K,,f,, (rot) und K,,g,, (blau) haben keine Asymptoten; der Graph K,,h,, (grün) hingegen hat die x-Achse als waagrechte Asymptote und die y-Achse als senkrechte Asymptote.
6 -[[image:Graphen erkunden ungerade.svg|| width="450"]]
7 -)))
8 -c) (((Man erkennt, dass die Graphen K,,f,, und K,,h,, punktsymmetrisch zum Koordinatenursprung sind (nur ungerade Hochzahlen im Funktionsterm).
9 9  
5 +b) Die Graphen K,,f,, (rot) und K,,g,, (blau) haben keine Asymptoten; der Graph K,,h,, (grün) hingegen hat die x-Achse als waagrechte Asymptote und die y-Achse als senkrechte Asymptote.
6 +[[image:Funktionsskizze2.png|| width="450"]]
7 +
8 +
9 +c) Man erkennt, dass die Graphen K,,f,, und K,,h,, punktsymmetrisch zum Koordinatenursprung sind (nur ungerade Hochzahlen im Funktionsterm).
10 +
10 10  Außerdem kann man sehen, dass der Graph K,,f,, im 1. Quadranten und der Graph K,,g,, spiegelsymmetrisch zur 1. Winkelhalbierenden (Gleichung {{formula}}y=x{{/formula}}) sind.
11 -)))
12 +
12 12  **Vorgriff Jahrgangsstufe 1:** Die Funktionen {{formula}}f{{/formula}} und {{formula}}g{{/formula}} sind Umkehrfunktionen zueinander.