Änderungen von Dokument Lösung Erkunden - Graph und Asymptoten (ungerader Parameter)
Zuletzt geändert von Holger Engels am 2025/01/19 11:04
Von Version 18.1
bearbeitet von Holger Engels
am 2025/01/19 11:02
am 2025/01/19 11:02
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 2 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.fujan - Inhalt
-
... ... @@ -1,12 +1,10 @@ 1 -a) (((Die Funktion {{formula}}f{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (roter Graph). 2 -Die Funktion {{formula}}g{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (blauer Graph). 3 -Die Funktion {{formula}}h{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}\setminus\lbrace 0 \rbrace{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}\setminus\lbrace 0 \rbrace{{/formula}} (grüner Graph). 4 -))) 5 -b) (((Die Graphen K,,f,, (rot) und K,,g,, (blau) haben keine Asymptoten; der Graph K,,h,, (grün) hingegen hat die x-Achse als waagrechte Asymptote und die y-Achse als senkrechte Asymptote. 6 -[[image:Graphen erkunden ungerade.svg|| width="450"]] 7 -))) 8 -c) (((Man erkennt, dass die Graphen K,,f,, und K,,h,, punktsymmetrisch zum Koordinatenursprung sind (nur ungerade Hochzahlen im Funktionsterm). 1 +a) {{formula}}f(x){{/formula}}: Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} Wertebereich {{formula}}\bold{W}=\mathbb{R}_{0}^{+}{{/formula}} 2 + {{formula}}g(x){{/formula}}: Definitionsbereich {{formula}}\bold{D}=\mathbb{R}_{0}^{+}{{/formula}} Wertebereich {{formula}}\bold{W}=\mathbb{R}_{0}^{+}{{/formula}} 3 + {{formula}}h(x){{/formula}}: Definitionsbereich {{formula}}\bold{D}=\mathbb{R}\setminus\lbrace 1 \rbrace{{/formula}} Wertebereich {{formula}}\bold{W}=\mathbb{R}^{+}{{/formula}} 9 9 10 -Außerdem kann man sehen, dass der Graph K,,f,, im 1. Quadranten und der Graph K,,g,, spiegelsymmetrisch zur 1. Winkelhalbierenden (Gleichung {{formula}}y=x{{/formula}}) sind. 11 -))) 12 -**Vorgriff Jahrgangsstufe 1:** Die Funktionen {{formula}}f{{/formula}} und {{formula}}g{{/formula}} sind Umkehrfunktionen zueinander. 5 +b) 6 +[[image:Funktionsskizze.png|| width="350"]] 7 + 8 +c) Man erkennt, dass der Graph K,,f,, im 1.Quadranten und der Graph K,,g,, spiegelsymmetrisch zur 1. Winkelhalbierenden (Gleichung {{formula}}y=x{{/formula}}) sind. 9 + 10 +**Vorgriff Jahrgangsstufe 1:** die Funktionen {{formula}}f(x){{/formula}} und {{formula}}g(x){{/formula}} sind Umkehrfunktionen zueinander
- Graphen erkunden ungerade.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -59.8 KB - Inhalt
- Graphen erkunden ungerade.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -107.4 KB - Inhalt
- Funktionsskizze2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.fujan - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Inhalt