Änderungen von Dokument BPE 2.2 Transformationen

Zuletzt geändert von Martin Rathgeb am 2025/02/23 18:53

Von Version 59.1
bearbeitet von Niklas Wunder
am 2024/10/14 14:47
Änderungskommentar: Neues Bild Transformationen2.png hochladen
Auf Version 90.1
bearbeitet von Martin Rathgeb
am 2024/12/18 11:55
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.niklaswunder
1 +XWiki.martinrathgeb
Inhalt
... ... @@ -9,19 +9,19 @@
9 9  {{formula}}f(x) = \frac{1}{x}{{/formula}}
10 10  {{formula}}f(x) = \sqrt{x}{{/formula}}
11 11  
12 -{{aufgabe id="Terme bestimmen" afb="I" kompetenzen="K4" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Funktionen/Allgemeines]]" cc="BY-SA"}}
13 -Die Funktionen f, g und h sind verschobene Potenzfunktionen mit den zugehörigen Schaubildern K,,f,,, K,,g,, und K,,h,,. Bestimmen Sie die jeweiligen Funktionsterme.
12 +{{aufgabe id="Terme bestimmen" afb="I" kompetenzen="K4" zeit="6" quelle="" cc="BY-SA"}}
13 +Die Funktionen f, g und h sind verschobene Potenzfunktionen mit den zugehörigen Schaubildern K,,f,,, K,,g,, und K,,h,,. Bestimme die jeweiligen Funktionsterme.
14 14  
15 15  [[image:Transformationen1.png||width="400px"]]
16 16  {{/aufgabe}}
17 17  
18 -{{aufgabe id="Potenzfunktionen verschieben" afb="I" kompetenzen="K1,K4" quelle="Niklas Wunder" zeit="8" cc="BY-SA"}}
18 +{{aufgabe id="Potenzfunktionen verschieben" afb="II" kompetenzen="K1,K4" quelle="Niklas Wunder" zeit="8" cc="BY-SA"}}
19 19  Die Funktionen {{formula}}f, g{{/formula}} und {{formula}} h{{/formula}} sind verschobene Potenzfunktionen mit den zugehörigen Schaubildern K,,f,,, K,,g,, und K,,h,,. Beschreibe wie die verschobenen Potenzfunktionen aus den ursprünglichen Funktionen hervorgehen.
20 -
21 - [[image:Transformationen2.png||width="400px"]]
20 +
21 +[[image:Transformationen2.png||width="400px"]]
22 22  {{/aufgabe}}
23 23  
24 -{{aufgabe id="Transformationen von Funktionsgraphen beschreiben" afb="I" kompetenzen="K1,K4" quelle="Martin Stern" zeit="12" cc="BY-SA"}}
24 +{{aufgabe id="Transformationen von Funktionsgraphen beschreiben" afb="I" kompetenzen="K1,K4" quelle="Martin Stern" zeit="6" cc="BY-SA"}}
25 25  Beschreibe, wie die Schaubilder der nachfolgenden Funktionen jeweils aus dem Graphen {{formula}} y=x^k; k \in \mathbb{Q} {{/formula}} entstanden sind.
26 26  a) {{formula}}f(x)=6x^4-1{{/formula}}
27 27  b) {{formula}}f(x)=-\frac{1}{2}(x-5)^4-3{{/formula}}
... ... @@ -29,11 +29,15 @@
29 29  d) {{formula}}f(x)=-4\,\sqrt[3]{x+1}+5{{/formula}}
30 30  {{/aufgabe}}
31 31  
32 -{{aufgabe id="Funktionsterme nach Transformationen bestimmen" afb="I" kompetenzen="K4" quelle="Martin Stern" zeit="5" cc="BY-SA"}}
32 +{{aufgabe id="Funktionsterme nach Transformationen bestimmen" afb="II" kompetenzen="K4" quelle="Martin Stern" zeit="8" cc="BY-SA"}}
33 33  Bestimme jeweils einen passenden Funktionsterm.
34 -
35 -a) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung sowie durch Verschiebung um 1 nach rechts und um 3 nach oben.\\
36 -b) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Verschiebung um 1 nach rechts und um 3 nach oben, Streckung mit dem Faktor 2 in y-Richtung sowie Spiegelung an der x-Achse.\\
34 +(% class="abc" %)
35 +1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} mit {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung sowie durch Verschiebung um 1 in x-Richtung und um 3 in y-Richtung.
36 +1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} mit {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Verschiebung um 1 in x-Richtung, um 3 in y-Richtung, Streckung mit dem Faktor 2 in y-Richtung sowie Spiegelung an der x-Achse.
37 37  {{/aufgabe}}
38 38  
39 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""}}
39 +{{lehrende}}
40 +Mit den ausgewählten Aufgaben sollten alle gefordeten Kompetenzen abgedeckt sein. Die Transformation wird nicht nur mit den drei im BP aufgeführten Funktionen, sondern mit allen möglichen Potenzfunktionen durchgeführt.
41 +{{/lehrende}}
42 +
43 +{{seitenreflexion bildungsplan="5" kompetenzen="2" anforderungsbereiche="2" kriterien="5" menge="4"}}