Wiki-Quellcode von Lösung Transformationen
Zuletzt geändert von Holger Engels am 2025/01/19 11:16
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | (% class="border" %) | ||
2 | |Transformation|{{formula}}y = x^2{{/formula}}|{{formula}}y = x^3{{/formula}}|{{formula}}y = x^{-1} = \frac{1}{x}{{/formula}}|{{formula}}y = x^\frac{1}{2} = \sqrt{x}{{/formula}} | ||
3 | |Verschiebung um 1 nach oben|{{formula}}y = x^2 + 1{{/formula}}|{{formula}}y = x^3+1{{/formula}}|{{formula}}y = x^{-1} +1= \frac{1}{x}+1{{/formula}}|{{formula}}y = x^\frac{1}{2}+1 = \sqrt{x}+1{{/formula}} | ||
4 | |Verschiebung um 2 nach unten|{{formula}}y = x^2 - 2{{/formula}}|{{formula}}y = x^3 - 2{{/formula}}|{{formula}}y = x^{-1} - 2 = \frac{1}{x} - 2{{/formula}}|{{formula}}y = x^\frac{1}{2}-2 = \sqrt{x}-2{{/formula}} | ||
5 | |Vertikale Streckung mit Faktor 0,8|{{formula}}y = 0,8x^2{{/formula}}|{{formula}}y = 0,8x^3{{/formula}}|{{formula}}y = 0,8x^{-1} = 0,8\frac{1}{x}{{/formula}}|{{formula}}y = 0,8x^\frac{1}{2} = 0,8\sqrt{x}{{/formula}} | ||
6 | |Verschiebung um 1,5 nach rechts|{{formula}}y = (x-1,5)^2{{/formula}}|{{formula}}y = (x-1,5)^3{{/formula}}|{{formula}}y = (x-1,5)^{-1} = \frac{1}{x-1,5}{{/formula}}|{{formula}}y = (x-1,5)^\frac{1}{2} = \sqrt{x-1,5}{{/formula}} | ||
7 | |Verschiebung um 2,5 nach links|{{formula}}y = (x+2,5)^2{{/formula}}|{{formula}}y = (x+2,5)^3{{/formula}}|{{formula}}y = (x+2,5)^{-1} = \frac{1}{x+2,5}{{/formula}}|{{formula}}y = (x+2,5)^\frac{1}{2} = \sqrt{x+2,5}{{/formula}} | ||
8 | |Spiegelung an der x-Achse|{{formula}}y = -x^2{{/formula}}|{{formula}}y = -x^3{{/formula}}|{{formula}}y = -x^{-1} = -\frac{1}{x}{{/formula}}|{{formula}}y = -x^\frac{1}{2} = -\sqrt{x}{{/formula}} |