Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 25.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:16
am 2025/04/07 01:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 27.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:18
am 2025/04/07 01:18
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,35 +3,25 @@ 3 3 4 4 **Lösungsschritte:** 5 5 (% class="abc" %) 6 -1. **Tabellarisches Verfahren (Teil 1)** 6 +1. **Tabellarisches Verfahren (Teil 1).** 7 7 8 -Wertetabelle :8 +//Wertetabelle I.// 9 9 10 10 (% class="border slim" %) 11 11 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}| 12 12 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}| 13 13 14 - *Interpretation:*14 +//Interpretation.// 15 15 Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar. 16 16 17 - 1.//Tabellarisches Verfahren (Teil1).//17 +2. **Tabellarisches Verfahren (Teil 2).** 18 18 19 - **Wertetabelle I(ganzzahlige Werte):**19 +//Wertetabelle II.// 20 20 (% class="border slim" %) 21 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 22 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}} 23 - 24 -**Interpretation:** 25 -Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig. 26 - 27 -2. //Tabellarisches Verfahren (Teil 2).// 28 - 29 -**Wertetabelle II (ergänzende Zwischenwerte):** 30 -(% class="border slim" %) 31 31 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}} 32 32 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}} 33 33 34 - **Interpretation:**24 +//Interpretation.// 35 35 i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2. 36 36 ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5. 37 37 iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.