Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 35.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:43
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 27.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:18
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -8,8 +8,8 @@
8 8  //Wertetabelle I.//
9 9  
10 10  (% class="border slim" %)
11 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}
12 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}
11 +|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|
12 +|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|
13 13  
14 14  //Interpretation.//
15 15  Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar.
... ... @@ -22,45 +22,35 @@
22 22  |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}
23 23  
24 24  //Interpretation.//
25 -i) Wir kennen nun nicht nur die beiden Nullstellen {{formula}}x=\pm 1{{/formula}}, sondern wissen auch, dass es in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} noch jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
26 -ii) Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion {{formula}}f{{/formula}} (vom Grad 4) unter Berücksichtigung der Vielfachheiten nur bis zu 4 reelle Nullstellen. Also sind alle Nullstellen von {{formula}}f{{/formula}} einfach mit {{formula}}-2<x_1<-1,5{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}} und {{formula}}+1,5<x_4<2{{/formula}}.
27 -iii) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und r alle {{formula}}x>x_4{{/formula}}.
25 +i) Also gilt {{formula}}f(x)>0{{/formula}} r alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2.
26 +ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5.
27 +iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
28 28  
29 29  3. **Graphische Skizze:**
30 30  
31 31  i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade.
32 -ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn das Globalverhalten von {{formula}}f{{/formula}} ist das Globalverhalten der Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
33 -iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+).
34 -iv) Also gilt {{formula}}f(x)>0{{/formula}} r alle {{formula}}x<x_1{{/formula}}, r alle {{formula}}x_2<x<x_3{{/formula}} und r alle {{formula}}x>x_4{{/formula}}.
32 +ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
33 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+).
34 +iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen).
35 35  
36 36  4. **Rechnerisches Verfahren:**
37 37  
38 38  i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}}
39 -ii) //Nullstellen// (jeweils 1-fach): {{formula}}x_1=-\sqrt{3}{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}}, {{formula}}x_4=+\sqrt{3}{{/formula}}
40 -iii) //Vorzeichenanalyse.//
39 +ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}}
40 +iii) //Vorzeichenanalyse://
41 41  iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle.
42 -iii.2) Testwertverfahren: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert.
42 +iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert.
43 43  
44 -(% class="border slim" %)
45 -| Intervall | Testwert | {{formula}}f(x){{/formula}}
46 -| {{formula}}x < x_1{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}+{{/formula}}
47 -| {{formula}}x_1 < x < x_2{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}-{{/formula}}
48 -| {{formula}}x_2 < x < x_3{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}+{{/formula}}
49 -| {{formula}}x_3 < x < x_4{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}-{{/formula}}
50 -| {{formula}}x > x_4{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}+{{/formula}}
44 +| Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} |
45 +| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
46 +| {{formula}}]-\sqrt{3}; -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
47 +| {{formula}}]-1;\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
48 +| {{formula}}]1;\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
49 +| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
51 51  
52 -*Gesuchte Lösung:*
53 -Die Ungleichung {{formula}}f(x) > 0{{/formula}} ist erfüllt für alle {{formula}}x{{/formula}} in:
51 +iv) //Gesuchte Lösung://
52 +Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}\quad =\quad ]-\infty; -\sqrt{3}[ \quad\cup\quad ]-1; +1[ \quad\cup\quad ]\sqrt{3}; +\infty[{{/formula}}
54 54  
55 -**L** = *der Vereinigung der folgenden offenen Intervalle:*
56 -„kleiner als die kleinste Nullstelle“: {{formula}}x < -\sqrt{3}{{/formula}}
57 -„zwischen –1 und 1“: {{formula}}-1 < x < 1{{/formula}}
58 -„größer als die größte Nullstelle“: {{formula}}x > \sqrt{3}{{/formula}}
59 -
60 -→ Formal:
61 -
62 -{{formula}}\mathbb{L} = ]-\infty,\ -\sqrt{3}[ \cup ]-1,\ 1[ \cup ]\sqrt{3},\ \infty[{{/formula}}
63 -
64 64  **Anmerkung:**
65 65  - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe.
66 66  - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen.