Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 37.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:45
am 2025/04/07 01:45
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 43.1
bearbeitet von Martin Rathgeb
am 2025/04/07 23:23
am 2025/04/07 23:23
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -27,12 +27,13 @@ 27 27 ii) Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion {{formula}}f{{/formula}} (vom Grad 4) unter Berücksichtigung der Vielfachheiten nur bis zu 4 reelle Nullstellen. Also sind alle Nullstellen von {{formula}}f{{/formula}} einfach mit {{formula}}-2<x_1<-1,5{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}} und {{formula}}+1,5<x_4<2{{/formula}}. 28 28 iii) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 29 29 30 -3. **Graphische Skizze:**30 +3. **Graphisches Verfahren:** 31 31 32 32 i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade. 33 33 ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn das Globalverhalten von {{formula}}f{{/formula}} ist das Globalverhalten der Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}. 34 34 iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+). 35 -iv) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 35 +iv) Skizze des Funktionsgraphen (selbst anfertigen) 36 +v) Der Skizze lässt sich entnehmen: Es gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 36 36 37 37 4. **Rechnerisches Verfahren:** 38 38 ... ... @@ -50,19 +50,19 @@ 50 50 | {{formula}}x_3 < x < x_4{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}-{{/formula}} 51 51 | {{formula}}x > x_4{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}+{{/formula}} 52 52 53 - *Gesuchte Lösung:*54 +//Gesuchte Lösung.// 54 54 Die Ungleichung {{formula}}f(x) > 0{{/formula}} ist erfüllt für alle {{formula}}x{{/formula}} in: 55 55 56 -**L** = *der Vereinigung der folgenden offenen Intervalle:* 57 -„kleiner als die kleinste Nullstelle“: {{formula}}x < -\sqrt{3}{{/formula}} 58 -„zwischen –1 und 1“: {{formula}}-1 < x < 1{{/formula}} 59 -„größer als die größte Nullstelle“: {{formula}}x > \sqrt{3}{{/formula}} 57 +//Lösungsmenge.// 58 +{{formula}}\mathbb{L} = {{/formula}} Vereinigung der folgenden offenen Intervalle: 59 +i) „kleiner als die kleinste Nullstelle“: {{formula}}x < -\sqrt{3}{{/formula}} 60 +ii) „zwischen –1 und 1“: {{formula}}-1 < x < 1{{/formula}} 61 +iii) „größer als die größte Nullstelle“: {{formula}}x > \sqrt{3}{{/formula}} 62 +Formal: {{formula}}\mathbb{L} = ]-\infty,\ -\sqrt{3}[ \cup ]-1,\ 1[ \cup ]\sqrt{3},\ \infty[{{/formula}} 60 60 61 -→ Formal: 62 - 63 -{{formula}}\mathbb{L} = ]-\infty,\ -\sqrt{3}[ \cup ]-1,\ 1[ \cup ]\sqrt{3},\ \infty[{{/formula}} 64 - 65 -**Anmerkung:** 66 -- Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe. 67 -- Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen. 68 -- Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge. 64 +**Anmerkung: Vergleich der Verfahren** 65 +- Das //tabellarische Verfahren// bietet erste Einsichten: Es erlaubt, Vorzeichen zu erkunden und funktionale Zusammenhänge aufzubauen. Es bleibt jedoch punktuell und qualitativ. 66 +- Das //graphische Verfahren// macht strukturelle Eigenschaften sichtbar: Symmetrie, Nullstellen, Anstiegsverhalten. Es visualisiert den Lösungsbereich und unterstützt Begriffsbildung. 67 +- Das //rechnerische Verfahren// führt zur exakten Lösung: Es erlaubt die genaue Bestimmung aller Nullstellen und den präzisen Aufbau der Lösungsmenge. Dafür sind algebraische Fähigkeiten nötig. 68 +//Didaktisch ergänzen sich die Verfahren.// 69 +Sie bilden eine sinnvolle Progression – von konkreten Werten (Tabelle) über strukturierte Bilder (Graph) bis zur abstrakten Ableitung (Rechnung). Ihr Zusammenspiel fördert nachhaltiges Konzeptverständnis.