Änderungen von Dokument BPE 4.1 Exponentialfunktion und Eulersche Zahl
Zuletzt geändert von Martin Rathgeb am 2025/04/24 13:46
Von Version 88.1
bearbeitet von Martin Rathgeb
am 2025/04/24 13:46
am 2025/04/24 13:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 86.1
bearbeitet von Martin Rathgeb
am 2025/04/24 01:12
am 2025/04/24 01:12
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,10 +11,10 @@ 11 11 {{/lernende}} 12 12 13 13 {{aufgabe id="Exponentialfunktion" afb="I" kompetenzen="K5" quelle="Holger Engels" zeit="2" cc="by-sa"}} 14 -Entscheide, ob derTerm Funktionsterm einerExponentialfunktionist.14 +Entscheide jeweils, ob es sich bei dem Funktionsterm um einen Exponentialfunktionsterm handelt. 15 15 (% class="abc" %) 16 -1. {{formula}}\frac{1}{8}(2(x-2))^3 + 1{{/formula}} 17 -1. {{formula}}\frac{1}{8}2^{3(x+1)}-1{{/formula}} 16 +1. {{formula}}f(x) = \frac{1}{8}(2(x-2))^3 + 1{{/formula}} 17 +1. {{formula}}f(x) = \frac{1}{8}2^{3(x+1)}-1{{/formula}} 18 18 {{/aufgabe}} 19 19 20 20 {{aufgabe id="e-Funktion im Vergleich" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5" cc="by-sa"}} ... ... @@ -30,17 +30,16 @@ 30 30 {{/aufgabe}} 31 31 32 32 {{aufgabe id="Negative Basis" afb="II" kompetenzen="K1,K6" quelle="Holger Engels" zeit="4" cc="by-sa"}} 33 -(% class="abc" %) 34 -1. Fülle die Wertetabelle aus soweit wie möglich. 33 +Fülle die Wertetabelle aus soweit wie möglich. 35 35 (% class="border slim" %) 36 36 |=x|2|1|0|-1|-2|-1,5 37 37 |={{formula}}(-2)^x{{/formula}}|||||| 38 38 39 - 1.Erläutere, warum Exponentialfunktion nur für positive Basen{{formula}}q>0{{/formula}}, {{formula}}q\ne 1{{/formula}}definiert werden.38 +Erläutere, warum wir die Exponentialfunktion nur für positive Basen definieren. 40 40 {{/aufgabe}} 41 41 42 42 {{aufgabe id="Basiswechsel verstehen" afb="II" kompetenzen="K5" quelle="Holger Engels" zeit="4" cc="by-sa"}} 43 - Gegebenist die Funktion {{formula}}f{{/formula}} mit {{formula}}f(x)=2^x{{/formula}}. Gib die Funktionsgleichungin der Form {{formula}}f(x)=4^{kx}{{/formula}} mit einem geeigneten //k// an.42 +Die Funktion {{formula}}f{{/formula}} ist gegeben mit {{formula}}f(x)=2^x{{/formula}}. Gib die Funktion {{formula}}f{{/formula}} in der Form {{formula}}f(x)=4^{kx}{{/formula}} mit einem geeigneten //k// an. 44 44 {{/aufgabe}} 45 45 46 46 {{aufgabe id="Basiswechsel" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="10" cc="by-sa"}}