Änderungen von Dokument BPE 4.1 Exponentialfunktion und Eulersche Zahl
Zuletzt geändert von Martin Rathgeb am 2025/04/25 01:56
Von Version 92.1
bearbeitet von Martin Rathgeb
am 2025/04/25 01:32
am 2025/04/25 01:32
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 83.1
bearbeitet von Holger Engels
am 2025/03/03 20:50
am 2025/03/03 20:50
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinrathgeb1 +XWiki.holgerengels - Inhalt
-
... ... @@ -4,7 +4,7 @@ 4 4 [[Kompetenzen.K4]] Ich kann eine Exponentialfunktion am Schaubild erkennen 5 5 [[Kompetenzen.K6]] Ich kann die Eulersche Zahl {{formula}}e{{/formula}} auf zwei Nachkommastellen genau angeben 6 6 [[Kompetenzen.K1]] Ich kann die besondere Bedeutung der natürlichen Basis nennen 7 -[[Kompetenzen.K5]] Ich kann einen Basiswechsel durchführen 7 +[[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann einen Basiswechsel durchführen 8 8 9 9 {{lernende}} 10 10 [[GeoGebra-Buch>>https://www.geogebra.org/m/khnsgz5a#material/UcgSUN2M]] ... ... @@ -11,70 +11,71 @@ 11 11 {{/lernende}} 12 12 13 13 {{aufgabe id="Exponentialfunktion" afb="I" kompetenzen="K5" quelle="Holger Engels" zeit="2" cc="by-sa"}} 14 -Entscheide, ob derTerm Funktionsterm einerExponentialfunktionist.14 +Entscheide jeweils, ob es sich bei dem Funktionsterm um einen Exponentialfunktionsterm handelt. 15 15 (% class="abc" %) 16 -1. {{formula}}\frac{1}{8}(2(x-2))^3 + 1{{/formula}} 17 -1. {{formula}}\frac{1}{8}2^{3(x+1)}-1{{/formula}} 16 +1. {{formula}}f(x) = \frac{1}{8}(2(x-2))^3 + 1{{/formula}} 17 +1. {{formula}}f(x) = \frac{1}{8}2^{3(x+1)}-1{{/formula}} 18 18 {{/aufgabe}} 19 19 20 -{{aufgabe id="e-Funktion im Vergleich" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5" cc="by-sa"}} 21 -[[image:EFunktion.svg||style="float: right; width:400px"]]Gegeben ist der Graph der Funktion {{formula}}f{{/formula}} mit {{formula}}f(x) = e^x{{/formula}}. 22 -Skizziere (ohne Taschenrechner, ohne Wertetabelle) die Graphen der Funktionen {{formula}}g{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}g(x) = 2^x{{/formula}} und {{formula}}h(x) = 3^x{{/formula}} im Vergleich zum Graphen von {{formula}}f{{/formula}}. 23 -{{/aufgabe}} 24 - 25 -{{aufgabe id="Graphen" afb="II" kompetenzen="K4" quelle="Holger Engels" zeit="8" cc="by-sa"}} 26 -Ordne die Funktionsgraphen den Funktionstermen zu und skizziere zudem in jedem Koordinatensystem den Abschnitt für {{formula}}x<0{{/formula}}. 27 -{{formula}}f(x)=1+2x{{/formula}}, {{formula}}g(x)=1 + x^2{{/formula}}, {{formula}}h(x)=(\frac{1}{2})^x{{/formula}}, {{formula}}i(x)=\frac{1}{(x+1)^2}{{/formula}}, {{formula}}j(x)=2^x{{/formula}}, {{formula}}k(x)=1{{/formula}}. 20 +{{aufgabe id="Graphen" afb="I" kompetenzen="K4" quelle="Holger Engels" zeit="8" cc="by-sa"}} 21 +Ordne die Funktionsgraphen den Funktionstermen zu und skizziere jeweils im Schaubild den Abschnitt für //x<0//. 22 +{{formula}}f(x)=1+2x{{/formula}} {{formula}}g(x)=1 + x^2{{/formula}} {{formula}}h(x)=(\frac{1}{2})^x{{/formula}} {{formula}}i(x)=\frac{1}{(x+1)^2}{{/formula}} {{formula}}j(x)=2^x{{/formula}} {{formula}}k(x)=1{{/formula}} 28 28 [[image:graph f.svg||style="margin: 8px;width:360px"]] [[image:graph g.svg||style="margin: 8px;width:360px"]] [[image:graph h.svg||style="margin: 8px;width:360px"]] [[image:graph p.svg||style="margin: 8px;width:360px"]] [[image:graph q.svg||style="margin: 8px;width:360px"]] [[image:graph r.svg||style="margin: 8px;width:360px"]] 29 29 (% class="abc" %) 30 30 {{/aufgabe}} 31 31 32 32 {{aufgabe id="Negative Basis" afb="II" kompetenzen="K1,K6" quelle="Holger Engels" zeit="4" cc="by-sa"}} 33 -(% class="abc" %) 34 -1. Fülle die Wertetabelle soweit möglich aus. 28 +Fülle die Wertetabelle aus soweit wie möglich. 35 35 (% class="border slim" %) 36 36 |=x|2|1|0|-1|-2|-1,5 37 37 |={{formula}}(-2)^x{{/formula}}|||||| 38 -1. Erläutere, warum Exponentialfunktionen nur für positive Basen {{formula}}q>0{{/formula}}, {{formula}}q\ne 1{{/formula}} definiert werden. 32 + 33 +Erläutere, warum wir die Exponentialfunktion nur für positive Basen definieren. 39 39 {{/aufgabe}} 40 40 41 41 {{aufgabe id="Basiswechsel verstehen" afb="II" kompetenzen="K5" quelle="Holger Engels" zeit="4" cc="by-sa"}} 42 - Gegebenist die Funktion {{formula}}f{{/formula}} mit {{formula}}f(x)=2^x{{/formula}}. Gib die Funktionsgleichungin der Form {{formula}}f(x)=4^{kx}{{/formula}} mit geeignetem{{formula}}k{{/formula}}an.37 +Die Funktion {{formula}}f{{/formula}} ist gegeben mit {{formula}}f(x)=2^x{{/formula}}. Gib die Funktion {{formula}}f{{/formula}} in der Form {{formula}}f(x)=4^{kx}{{/formula}} mit einem geeigneten //k// an. 43 43 {{/aufgabe}} 44 44 45 -{{aufgabe id="Basiswech sel" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="10" cc="by-sa"}}40 +{{aufgabe id="Basiswechel" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="10" cc="by-sa"}} 46 46 Führe bei folgenden Exponentialfunktionen jeweils einen Basiswechsel durch. 47 47 (% class="abc" %) 48 48 1. {{formula}}f(x)=(\frac{1}{4})^x{{/formula}}, neue Basis {{formula}}b=2{{/formula}} 44 +1. {{formula}}f(x)=(\frac{3}{18})^x{{/formula}}, neue Basis {{formula}}b=6{{/formula}} 49 49 1. {{formula}}f(x)=9^x{{/formula}}, neue Basis {{formula}}b=\frac{1}{3}{{/formula}} 50 50 1. {{formula}}f(x)=5^{2x+1}{{/formula}}, neue Basis {{formula}}b=25{{/formula}} 47 +1. {{formula}}f(x)=(\frac{16}{54})^{2x}{{/formula}}, neue Basis {{formula}}b=\frac{3}{2}{{/formula}} 51 51 {{/aufgabe}} 52 52 53 -{{aufgabe id="Eulersche Zahl" afb="I" kompetenzen="K1,K6" quelle="Niklas Wunder, Katharina Schneider" zeit="6" cc="by-sa"}} 54 -Gegeben sind folgende Zahlterme: 55 -{{formula}}a_1=2{{/formula}} 56 -{{formula}}a_2=2+\frac{1}{1\cdot 2}{{/formula}} 57 -{{formula}}a_3=2+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}{{/formula}} 58 -{{formula}}a_4=2+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\frac{1}{1\cdot 2\cdot 3\cdot 4}{{/formula}} 59 -(% class="abc" %) 60 -1. Welches Muster lässt sich bei der Berechnung erkennen? Führe das Muster für {{formula}} a_5, a_6 61 -{{/formula}} fort und berechne die beiden Werte. 62 -1. Die Eulersche Zahl {{formula}} e{{/formula}} ergibt sich durch Fortsetzung der Summenregel. Gib {{formula}} e{{/formula}} so genau an, wie du sie in a) berechnet hast. 50 +{{aufgabe id="e-Funktion im Vergleich" afb="II" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5" cc="by-sa"}} 51 +Gegeben ist der Graph zu {{formula}}f(x)=e^x{{/formula}}. Skizziere deine Vermutung wie die Graphen von {{formula}}g(x)=2^x{{/formula}} und {{formula}}h(x)=3^x{{/formula}} verlaufen. 52 +(Ohne Taschenrechner, ohne Wertetabelle) 53 +[[image:EFunktion.svg||width=500]] 63 63 {{/aufgabe}} 64 64 65 -{{aufgabe id="Natürliche Basis anschaulich" afb="II" kompetenzen="K1" quelle="Erweiterung" zeit="5" cc="by-sa"}} 66 -Gegeben ist die Exponentialfunktion {{formula}}f{{/formula}} mit {{formula}}f(x) = q^x{{/formula}}. 56 +{{aufgabe id="Eigenschaften der e-Funktion" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5" cc="by-sa"}} 57 +Erstelle einen Steckbrief für die e-Funktion {{formula}}f(x)=e^x{{/formula}} mit allen relevanten Eigenschaften. 58 +{{/aufgabe}} 59 + 60 +{{aufgabe id="Eulersche Zahl" afb="II" kompetenzen="K1,K6" quelle="Niklas Wunder, Katharina Schneider" zeit="12"}} 61 +Gegeben sind die Zahlterme 62 +{{formula}} a_1=2{{/formula}} 63 +{{formula}} a_2=2+\frac{1}{1\cdot 2}{{/formula}} 64 +{{formula}} a_3=2+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}{{/formula}} 65 +{{formula}} a_4=2+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\frac{1}{1\cdot 2\cdot 3\cdot 4}{{/formula}} 67 67 (% class="abc" %) 68 -1. Berechne für verschiedene Werte von {{formula}}q \in \{2; 2{,}5; 3; e\}{{/formula}} den Funktionswert an der Stelle {{formula}}x = 0{{/formula}} sowie die mittlere Änderungsrate im Intervall {{formula}}[0, 0{,}1]{{/formula}}. Trage die Werte in eine geeignete Tabelle ein. 69 -1. Welche Besonderheit stellst du für {{formula}}q = e{{/formula}} fest? 70 -1. Erkläre, warum man {{formula}}e{{/formula}} als „natürliche“ Basis einer Exponentialfunktion bezeichnet. 67 +1. Welchem Muster lässt sich bei der Berechnung erkennen? Führe das Muster fort und berechne {{formula}} a_5, a_6 68 +{{/formula}}. 69 +1. Die eulersche Zahl {{formula}} e{{/formula}} ist gegeben durch {{formula}} e= 2+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\frac{1}{1\cdot 2\cdot 3\cdot 4}+ ...{{/formula}}, d.h durch Fortsetzung des Musters berechnet man die Zahl {{formula}} e{{/formula}} auf immer mehr Nachkommastellen. Gib die Zahl {{formula}} e{{/formula}} so genau an, wie du sie in a) berechnet hast. 70 + 71 +**Hinweis:** Für die Zahlterme {{formula}} a_7, a_8, ...{{/formula}} erhältst du eine beliebige Genauigheit. 71 71 {{/aufgabe}} 72 72 73 73 {{lehrende}} 74 -"Ich kann die besondere Bedeutung der natürlichen Basis nennen" wird in den Aufgaben nicht (bzw.am ehesten in Aufgabe "Natürliche Basis anschaulich") abgedeckt, da die Bedeutung der Basis //e// als besondere Basis der Exponentialfunktion erst in der Differentialrechnung eine wichtige Rolle spielt. Die stetige Verzinsung bietet sich für den Unterricht an.75 +"Ich kann die besondere Bedeutung der natürlichen Basis nennen" wird in den Aufgaben nicht abgedeckt, da die Bedeutung der Basis //e// als besondere Basis der Exponentialfunktion erst in der Differentialrechnung eine wichtige Rolle spielt. Die stetige Verzinsung bietet sich für den Unterricht an. 75 75 K3 wird bewusst weggelassen, weil es in [[BPE 4.6>>BPE_4_6]] behandelt wird. 76 - FürK2gebendieKompetenzennurwenigher.77 +Zu K2 könnte man sich noch was überlegen. 77 77 AFB III muss hier nicht erreicht werden. 78 78 {{/lehrende}} 79 79 80 -{{seitenreflexion bildungsplan="4" kompetenzen=" 4" anforderungsbereiche="5" kriterien="5" menge="5"/}}81 +{{seitenreflexion bildungsplan="4" kompetenzen="3" anforderungsbereiche="5" kriterien="5" menge="5"/}}