Änderungen von Dokument BPE 4.2 Transformationen
Zuletzt geändert von Holger Engels am 2025/03/11 21:53
Von Version 47.7
bearbeitet von Holger Engels
am 2025/02/26 14:34
am 2025/02/26 14:34
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 47.8
bearbeitet von Holger Engels
am 2025/02/26 15:06
am 2025/02/26 15:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -10,6 +10,19 @@ 10 10 [[KMap Interaktiv erkunden>>https://kmap.eu/app/browser/Mathematik/Exponentialfunktionen/Verschieben%2C%20Strecken%2C%20Spiegeln]] 11 11 {{/lernende}} 12 12 13 +{{aufgabe id="Term und Skizze" afb="I" kompetenzen="K4,K5" quelle="Martina Wagner" cc="BY-SA" zeit="12"}} 14 +Der Graph der Funktion //f// mit {{formula}}f(x)=2^x{{/formula}} wird jeweils durch eine oder mehrere Transformationen verändert. Stelle den zugehörigen Funktionsterm auf und skizziere den neuen Graphen. 15 +(% class="abc" %) 16 +1. Verschiebung in y-Richtung um 3 17 +1. Streckung in y-Richtung mit dem Faktor {{formula}}-\frac{1}{2}{{/formula}} und Verschiebung in y-Richtung um -5 18 +1. Spiegelung an der y-Achse; Streckung in y-Richtung mit dem Faktor 1,5; Verschiebung in y-Richtung um 1 19 +1. Streckung in x-Richtung mit dem Faktor 0,5 und Verschiebung in y-Richtung um -2 20 +{{/aufgabe}} 21 + 22 +{{aufgabe id="Transformationen aus Schaubild" afb="I" kompetenzen="K4,K5,K6" quelle="Martina Wagner" cc="BY-SA" zeit="5"}} 23 +[[Abbildung 1>>image:Exp-Funktion.png||style="float:right;width:250px"]]Gegeben ist der Graph der Funktion //f// mit {{formula}}f(x)=a\cdot2^{\pm x}+d{{/formula}}. Beschreibe, durch welche Transformationen der Graph von //f// aus dem Graphen der Funktion //g// mit {{formula}}g(x)=2^x{{/formula}} hervorgeht, und stelle den zugehörigen Funktionsterm auf. 24 +{{/aufgabe}} 25 + 13 13 {{aufgabe id="Analogie 1" afb="II" kompetenzen="K1,K4,K5" quelle="Elke Hallmann" cc="BY-SA" zeit="5"}} 14 14 Gegeben sind die Schaubilder //K,,f,,// und //K,,g,,// und die Funktionsterme {{formula}}f(x)=a\cdot2^x{{/formula}} und {{formula}}g(x)=2^{x-c}{{/formula}}. 15 15 [[image:exp f.svg||style="margin:8px;width:360px"]] [[image:exp g.svg||style="margin:8px;width:360px"]] ... ... @@ -25,25 +25,12 @@ 25 25 1. Ermittle einen weiteren Funktionsterm {{formula}}h{{/formula}} des Graphens {{formula}}K_g{{/formula}} in der Form {{formula}}h(x)=q^x{{/formula}}. 26 26 {{/aufgabe}} 27 27 28 -{{aufgabe id="Aufstellen eines Funktionstermes" afb="II" kompetenzen="K 2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/grundlegend/2022_M_grundlege_20.pdf]]" niveau="g" tags="iqb" cc="by" zeit="8"}}41 +{{aufgabe id="Aufstellen eines Funktionstermes" afb="II" kompetenzen="K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/grundlegend/2022_M_grundlege_20.pdf]]" niveau="g" tags="iqb" cc="by" zeit="8"}} 29 29 [[image:Graphexponentialfunktion.PNG||width="180" style="float: right"]](% class="abc" %) 30 30 1. Die Abbildung zeigt den Graphen der Funktion {{formula}}f: x \mapsto a \cdot b^x{{/formula}} mit {{formula}} a,b \in \mathbb{R}^+{{/formula}}. Bestimme passende Werte von {{formula}}a{{/formula}} und {{formula}}b{{/formula}}. 31 31 1. Der Graph der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}g: x \mapsto 3^x{{/formula}} wird um 2 in negative x-Richtung verschoben. Zeige, dass der dadurch entstandene Graph durch eine Streckung des Graphen von {{formula}}g{{/formula}} in y-Richtung erzeugt werden kann. 32 32 {{/aufgabe}} 33 33 34 -{{aufgabe id="Term und Skizze" afb="I" kompetenzen="K4,K5" quelle="Martina Wagner" cc="BY-SA" zeit="12"}} 35 -Der Graph der Funktion //f// mit {{formula}}f(x)=2^x{{/formula}} wird jeweils durch eine oder mehrere Transformationen verändert. Stelle den zugehörigen Funktionsterm auf und skizziere den neuen Graphen. 36 -(% class="abc" %) 37 -1. Verschiebung in y-Richtung um 3 38 -1. Streckung in y-Richtung mit dem Faktor {{formula}}-\frac{1}{2}{{/formula}} und Verschiebung in y-Richtung um -5 39 -1. Spiegelung an der y-Achse; Streckung in y-Richtung mit dem Faktor 1,5; Verschiebung in y-Richtung um 1 40 -1. Streckung in x-Richtung mit dem Faktor 0,5 und Verschiebung in y-Richtung um -2 41 -{{/aufgabe}} 42 - 43 -{{aufgabe id="Transformationen aus Schaubild" afb="I" kompetenzen="K4,K5,K6" quelle="Martina Wagner" cc="BY-SA" zeit="4"}} 44 -[[Abbildung 1>>image:Exp-Funktion.png||style="float:right;width:250px"]]Gegeben ist der Graph der Funktion //f// mit {{formula}}f(x)=a\cdot2^{\pm x}+d{{/formula}}. Beschreibe, durch welche Transformationen der Graph von //f// aus dem Graphen der Funktion //g// mit {{formula}}g(x)=2^x{{/formula}} hervorgeht, und stelle den zugehörigen Funktionsterm auf. 45 -{{/aufgabe}} 46 - 47 47 {{aufgabe id="Transformationen aus Funktionsterm" afb="I" kompetenzen="K4,K6" quelle="Niklas Wunder, Katharina Schneider" cc="BY-SA" zeit="12"}} 48 48 Skizziere das Schaubild von {{formula}} g(x) {{/formula}} und beschreibe wie {{formula}}K_g {{/formula}} aus dem Graphen von {{formula}} f {{/formula}} mit {{formula}} f(x)=e^x {{/formula}} entsteht. 49 49 (% class="abc" %)