Wiki-Quellcode von Lösung Graphen beschreiben und skizzieren
Version 8.1 von Frauke Beckstette am 2024/12/18 13:42
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | {{formula}} f(x)=e^x+2 {{/formula}} | ||
2 | globales Verhalten: | ||
3 | wenn {{formula}} x \to -\infty{{/formula}} dann {{formula}} f(x) \to y=2 {{/formula}} | ||
4 | wenn {{formula}} x \to \infty{{/formula}} dann {{formula}} f(x) \to \infty {{/formula}} | ||
5 | Asymptote: {{formula}} y=2 {{/formula}} | ||
6 | Schnittpunkt mit der {{formula}}y{{/formula}}-Achse: {{formula}} S_y(0|3) {{/formula}} | ||
7 | [[image:Skizze1.png||width="400"]] | ||
8 | |||
9 | |||
10 | {{formula}} g(x)=e^{-x} - 1,5 {{/formula}} | ||
11 | globales Verhalten: | ||
12 | wenn {{formula}} x \to -\infty{{/formula}} dann {{formula}} f(x) \to \infty {{/formula}} | ||
13 | wenn {{formula}} x \to \infty{{/formula}} dann {{formula}} f(x) \to y=-1,5 {{/formula}} | ||
14 | Asymptote: {{formula}} y=2 {{/formula}} | ||
15 | Schnittpunkt mit der {{formula}}y{{/formula}}-Achse: {{formula}} S_y(0|-0,5) {{/formula}} | ||
16 | [[image:Skizze2.png||width="400"]] | ||
17 | |||
18 | |||
19 | {{formula}} h(x)=-e^{x+2,5} {{/formula}} | ||
20 | globales Verhalten: | ||
21 | wenn {{formula}} x \to -\infty{{/formula}} dann {{formula}} f(x) \to y=0 {{/formula}} | ||
22 | wenn {{formula}} x \to \infty{{/formula}} dann {{formula}} f(x) \to -\infty {{/formula}} | ||
23 | Asymptote: {{formula}} y=2 {{/formula}} | ||
24 | Schnittpunkt mit der {{formula}}y{{/formula}}-Achse: {{formula}} S_y(0|-e^{2,5}) {{/formula}} | ||
25 | [[image:Skizze3.png||width="400"]] |