Änderungen von Dokument BPE 4.5 Logarithmus und Exponentialgleichungen
Zuletzt geändert von Holger Engels am 2025/03/13 07:51
Von Version 1.1
bearbeitet von holger
am 2022/11/13 18:05
am 2022/11/13 18:05
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 43.1
bearbeitet von Martin Rathgeb
am 2025/02/25 17:40
am 2025/02/25 17:40
Änderungskommentar:
Neues Bild 2^x und 8.svg hochladen
Zusammenfassung
-
Seiteneigenschaften (4 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 3 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Titel
-
... ... @@ -1,1 +1,1 @@ 1 -Logarithmus und Exponentialgleichungen 1 +BPE 4.5 Logarithmus und Exponentialgleichungen - Übergeordnete Seite
-
... ... @@ -1,1 +1,1 @@ 1 - Main.WebHome1 +Eingangsklasse.WebHome - Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.h olger1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -1,6 +1,64 @@ 1 -{{box cssClass="floatinginfobox" title="**Contents**"}} 2 -{{toc start=2 depth=2 /}} 3 -{{/box}} 1 +{{seiteninhalt/}} 4 4 5 -Die Schülerinnen und Schüler deuten den Logarithmus einer Zahl als Lösung einer Exponentialgleichung. Exponentialgleichungen lösen sie algebraisch und begründen die Auswahl der jeweiligen Lösungsstrategie. Die berechneten Lösungen interpretieren die Schülerinnen und Schüler grafisch als Nullstellen einer Funktion beziehungsweise als Schnittstellen zweier Funktionen. 3 +[[Kompetenzen.K5]] Ich kann Logarithmus nutzen, um eine Exponentialgleichung zu lösen 4 +[[Kompetenzen.K5]] Ich kann eine geeignete Strategie wählen, um eine gegebene Exponentialgleichung zu lösen 5 +[[Kompetenzen.K1]] Ich kann die Wahl einer Lösungsstrategie für eine Exponentialgleichung begründen 6 +[[Kompetenzen.K5]] Ich kann Exponentialgleichungen algebraisch lösen 7 +[[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren 8 +[[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren 6 6 10 +Aufgaben: 11 +– Logarithmus: graphisches Ermitteln vs. Operator 12 +Lösen von Exponentialgleichungen: 13 +– Vokabelheft für Umkehroperationen 14 +– Umkehrung der Rechenoperationen (Logarithmieren!) zzgl. Grundrechenarten 15 +– Faktorisierung durch Ausklammern und Satz vom Nullprodukt zzgl. Grundrechenarten 16 +– Substitution (abc-Formel, pq-Formel, Typ I) zzgl. Grundrechenarten 17 +- Näherungslösungen 18 + 19 +Gleichungen: 20 +x+y = e --> y = e - x 21 +x*y = e --> y = e / x 22 +e^y = x --> y = ln(x) 23 + 24 +{{aufgabe id="Logarithmus" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}} 25 +Bilde für {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} möglichst viele Gleichungen der folgenden Typen: 26 +(% class="abc" %) 27 +1. {{formula}} c = a^b {{/formula}} 28 +1. {{formula}} c = \sqrt[a]{b} {{/formula}} 29 +1. {{formula}} c = \log_a(b) {{/formula}} 30 +{{/aufgabe}} 31 + 32 +{{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}} 33 +Bestimme die Lösungsmenge der folgenden Exponentialgleichungen: 34 +(% class="abc" %) 35 +1. {{formula}} 4\cdot 0,5^x=100 {{/formula}} 36 +1. {{formula}} e^x=3 {{/formula}} 37 +1. {{formula}} 2e^x-4=8 {{/formula}} 38 +1. {{formula}} 2e^{-0.5x}=6{{/formula}} 39 +1. {{formula}} e^x=-5 {{/formula}} 40 +1. {{formula}} 2e^x=e^{2x} {{/formula}} 41 +1. {{formula}} 2e^x-3=e^{2x} {{/formula}} 42 +{{/aufgabe}} 43 + 44 +{{aufgabe id="Exponentialgleichungen" afb="I" kompetenzen="K5" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}} 45 +Bestimme die Lösungsmenge der folgenden Exponentialgleichungen 46 +(% class="abc" %) 47 +1. {{formula}} 3^{x+1}=81 {{/formula}} 48 +1. {{formula}} 5^{2x}=25^{2x+2} {{/formula}} 49 +1. {{formula}} 10^{x}=500{{/formula}} 50 +1. {{formula}} 2^{x+3}=4^{x-1} {{/formula}} 51 +{{/aufgabe}} 52 + 53 +{{aufgabe id="Exponentialgleichungen graphisch" afb="II" kompetenzen="K4,K6" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}} 54 +Löse mit Hilfe der nebenstehenden Abbildung folgende Exponentialgleichungen näherungsweise. Hinweis: Ordne die linke und die rechte Seite der jeweiligen Gleichung passend den Funktionsgraphen zu. 55 +(% class="abc" %) 56 +a) {{formula}} 2^x=(\frac{3}{4})^x+2 {{/formula}} 57 +b) {{formula}} 7-e^{x-3}=(\frac{3}{4})^x+2 {{/formula}} 58 +c) {{formula}} 2^x=1{,}5^{x+2}-0{,}5 {{/formula}} 59 +d) {{formula}} 7-e^{x-3}=4-\frac{1}{2}\,x {{/formula}} 60 + 61 +[[image:ExpGlei.svg]] 62 +{{/aufgabe}} 63 + 64 +{{seitenreflexion/}}
- 2^x und 8.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +6.7 KB - Inhalt
-
... ... @@ -1,0 +1,38 @@ 1 +<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" width="211.159" height="47.277" viewBox="0 0 211.159 47.277"> 2 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-99.21382 0H98.75554"/> 3 +<path transform="matrix(1,0,0,-1,198.16754,31.182002)" stroke-width=".31879" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000000" d="M-1.19551 1.59401C-1.09587 .99626 0 .09961 .29886 0 0-.09961-1.09587-.99626-1.19551-1.59401"/> 4 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .000015258789 47.277)" font-size="9.9626" font-family="CMMI10" font-style="italic"><tspan y="-13.951" x="202.144">x</tspan></text> 5 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-85.04042 2.83484V-2.83484"/> 6 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000009536743 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="10.221 13.538546">-3</tspan></text> 7 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-56.69362 2.83484V-2.83484"/> 8 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="38.568 41.885549">-2</tspan></text> 9 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-28.3468 2.83484V-2.83484"/> 10 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="66.914 70.231548">-1</tspan></text> 11 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M0 2.83484V-2.83484"/> 12 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000076293949 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="96.921">0</tspan></text> 13 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M28.3468 2.83484V-2.83484"/> 14 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000076293949 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="125.268">1</tspan></text> 15 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M56.69362 2.83484V-2.83484"/> 16 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="153.614">2</tspan></text> 17 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M85.04042 2.83484V-2.83484"/> 18 +<text xml:space="preserve" transform="matrix(1 0 -0 1 -.000015258789 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="181.96">3</tspan></text> 19 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-70.867 1.4174V-1.4174"/> 20 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-42.5202 1.4174V-1.4174"/> 21 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-14.17339 1.4174V-1.4174"/> 22 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M14.17339 1.4174V-1.4174"/> 23 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M42.5202 1.4174V-1.4174"/> 24 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M70.867 1.4174V-1.4174"/> 25 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-92.1271 22.67752V31.18166H-77.95372V22.67752ZM-77.95372 31.18166" fill="#ffffff"/> 26 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-92.1271 14.17339V28.3468H-77.95372V14.17339ZM-77.95372 28.3468"/> 27 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-35.43349 22.67752V31.18166H-21.2601V22.67752ZM-21.2601 31.18166" fill="#ffffff"/> 28 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-35.43349 14.17339V28.3468H-21.2601V14.17339ZM-21.2601 28.3468"/> 29 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-7.08669 22.67752V31.18166H7.08669V22.67752ZM7.08669 31.18166" fill="#ffffff"/> 30 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-7.08669 14.17339V28.3468H7.08669V14.17339ZM7.08669 28.3468"/> 31 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M7.08669 22.67752V31.18166H21.2601V22.67752ZM21.2601 31.18166" fill="#ffffff"/> 32 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M7.08669 14.17339V28.3468H21.2601V14.17339ZM21.2601 28.3468"/> 33 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M21.2601 22.67752V31.18166H35.43349V22.67752ZM35.43349 31.18166" fill="#ffffff"/> 34 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M21.2601 14.17339V28.3468H35.43349V14.17339ZM35.43349 28.3468"/> 35 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M77.95372 22.67752V31.18166H92.1271V22.67752ZM92.1271 31.18166" fill="#ffffff"/> 36 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M77.95372 14.17339V28.3468H92.1271V14.17339ZM92.1271 28.3468"/> 37 +</svg> 38 +
- ExpGlei.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.niklaswunder - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +256.5 KB - Inhalt
- SchaubilderExp.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.niklaswunder - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +29.9 KB - Inhalt