Zuletzt geändert von Holger Engels am 2025/03/13 07:51

Von Version 123.6
bearbeitet von Holger Engels
am 2025/03/10 15:12
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 87.1
bearbeitet von Dirk Tebbe
am 2025/02/26 13:24
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.dirktebbe
Inhalt
... ... @@ -7,7 +7,6 @@
7 7  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren
9 9  
10 -{{lehrende}}
11 11  Aufgaben:
12 12  – Logarithmus: graphisches Ermitteln vs. Operator
13 13  Lösen von Exponentialgleichungen:
... ... @@ -20,17 +20,14 @@
20 20  Gleichungen:
21 21  x+y = e --> y = e - x
22 22  x*y = e --> y = e / x
23 -e^y = x --> y = {{{ln(x)}}}
24 -{{/lehrende}}
22 +e^y = x --> y = ln(x)
25 25  
26 26  {{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
27 -Nenne jeweils eine passende Gleichung:
28 -
29 -Die Gleichung kann ich nach x auflösen, indem ich …
25 +Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}
30 30  (% class="abc" %)
31 -1. die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
32 -1. von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
33 -1. die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
27 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
28 +1. {{formula}} \ldots {{/formula}} von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
29 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
34 34  {{/aufgabe}}
35 35  
36 36  {{aufgabe id="Gleichungen aufstellen II" afb="I" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
... ... @@ -38,26 +38,27 @@
38 38  {{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}
39 39  {{/aufgabe}}
40 40  
41 -{{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}}
42 -Ordne zu:
43 -(% class="border slim " %)
44 -|Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder
45 -|{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \sqrt[3]{8} {{/formula}}|(((
37 +{{aufgabe id="Darstellungen zuordnen" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
38 +Ordne zu!
39 +(% class="abc" %)
40 +1. (((Gleichungen (implizite und explizite):
41 +1. {{formula}} x^3 = 8 {{/formula}}
42 +1. {{formula}} 2^x = 8 {{/formula}}
43 +1. {{formula}} x = \sqrt[3]{8=} {{/formula}}
44 +1. {{formula}} x = \log_{2}(8) {{/formula}}
45 +)))
46 +1. Wertetabellen:
47 +(((
46 46  |x|0|1|2|3
47 -|y|1|2|4|8
48 -)))|[[image:2^xund8.svg||width="200px"]]
49 -|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = -\log_{2}(8) {{/formula}} |(((
50 -|x|0|1|2|3
51 51  |y|0|1|8|27
52 -)))|[[image:2^-xund8.svg||width="200px"]]
53 -|{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |(((
50 +)))
51 +
52 +(((
54 54  |x|0|1|2|3
55 -|y|1|\frac{1}{2}|\frac{1}{4}|\frac{1}{8}
56 -)))|[[image:x^3und8.svg||width="200px"]]
57 -|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = x = \frac{1}{\sqrt[3]{8}} {{/formula}} |(((
58 -|x|0|1|2|3
59 -|y|n.d.|1|\frac{1}{8}|\frac{1}{27}
60 -)))|[[image:x^-3und8.svg||width="200px"]]
54 +|y|0|1|8|27
55 +)))
56 +1. zwei Graphen
57 +[[image:8und2^x.svg||width="200px"]]
61 61  {{/aufgabe}}
62 62  
63 63  {{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
... ... @@ -66,38 +66,38 @@
66 66  [[image:Logarithmus_neu.svg||width="600px"]]
67 67  
68 68  (% class="abc" %)
69 -1. {{formula}} \log_{10}(0.1) {{/formula}}
70 -1. {{formula}} \log_{100}(0.1) {{/formula}}
71 -1. {{formula}} \log_{0.1}(0.1) {{/formula}}
66 +1. {{formula}} \log_{10}(10) {{/formula}}
67 +1. {{formula}} \log_{100}(10) {{/formula}}
68 +1. {{formula}} \log_{11}(10) {{/formula}}
72 72  1. {{formula}} \log_{10}(1000) {{/formula}}
73 73  1. {{formula}} \log_{10}(50) {{/formula}}
74 -1. {{formula}} \log_{0.1}(1000) {{/formula}}
71 +1. {{formula}} \log_{11}(1000) {{/formula}}
75 75  1. {{formula}} \log_{10}(1) {{/formula}}
76 76  1. {{formula}} \log_{100}(10) {{/formula}}
77 77  1. {{formula}} \log_{10}(10) {{/formula}}
78 78  {{/aufgabe}}
79 79  
80 -{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
77 +{{aufgabe id="Exponentialgleichungen lösen (graphisch vs rechnerisch)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
81 81  (% class="abc" %)
82 82  Ermittle die Lösung der Gleichung {{formula}} 2^x = 5 {{/formula}} graphisch und rechnerisch.
83 83  {{/aufgabe}}
84 84  
85 -{{aufgabe id="Gleichungen gemeinsamer Form" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
82 +{{aufgabe id="Exponentialgleichungen sbarkeit (graphisch vs rechnerisch)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
86 86  (% class="abc" %)
87 -Aufgabe als Dokument im Anhang ‚unten‘.
84 +Gegeben sind die beiden Gleichungen {{formula}} x^2 = a {{/formula}} und {{formula}} 2^x = a {{/formula}} für {{formula}} a \in \mathbb{R} {{/formula}}. Untersuche ihre Lösbarkeit in Abhängigkeit von {{formula}} a {{/formula}}.
85 +{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:. {{/formula}}
88 88  {{/aufgabe}}
89 89  
90 -{{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
91 -Bestimme die Lösung der folgenden Gleichungen:
92 92  
93 -(% class="border slim " %)
94 -|Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution
95 -|{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}}
96 -|{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}}
97 -|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}}
98 -|{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}}
89 +{{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
90 +Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}
91 +(% class="abc" %)
92 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
93 +1. {{formula}} \ldots {{/formula}} von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
94 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
99 99  {{/aufgabe}}
100 100  
97 +
101 101  {{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}}
102 102  Bestimme die Lösungsmenge der Exponentialgleichung:
103 103  (% class="abc" %)
2^-xund8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,0 @@
1 -65.6 KB
Inhalt
2^-xund8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,0 @@
1 -52.7 KB
Inhalt
2^xund8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -60.0 KB
Inhalt
2^xund8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -50.3 KB
Inhalt
BPE 4.5 A Gleichungen Gemeinsamer Form.pdf
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -562.4 KB
Inhalt
x^-3und8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,0 @@
1 -70.0 KB
Inhalt
x^-3und8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,0 @@
1 -49.9 KB
Inhalt
x^3und8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -61.4 KB
Inhalt
x^3und8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -52.9 KB
Inhalt
2^x und 8.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.martinrathgeb
Größe
... ... @@ -1,0 +1,1 @@
1 +6.7 KB
Inhalt
... ... @@ -1,0 +1,38 @@
1 +<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" width="211.159" height="47.277" viewBox="0 0 211.159 47.277">
2 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-99.21382 0H98.75554"/>
3 +<path transform="matrix(1,0,0,-1,198.16754,31.182002)" stroke-width=".31879" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000000" d="M-1.19551 1.59401C-1.09587 .99626 0 .09961 .29886 0 0-.09961-1.09587-.99626-1.19551-1.59401"/>
4 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .000015258789 47.277)" font-size="9.9626" font-family="CMMI10" font-style="italic"><tspan y="-13.951" x="202.144">x</tspan></text>
5 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-85.04042 2.83484V-2.83484"/>
6 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000009536743 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="10.221 13.538546">-3</tspan></text>
7 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-56.69362 2.83484V-2.83484"/>
8 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="38.568 41.885549">-2</tspan></text>
9 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-28.3468 2.83484V-2.83484"/>
10 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="66.914 70.231548">-1</tspan></text>
11 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M0 2.83484V-2.83484"/>
12 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000076293949 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="96.921">0</tspan></text>
13 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M28.3468 2.83484V-2.83484"/>
14 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000076293949 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="125.268">1</tspan></text>
15 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M56.69362 2.83484V-2.83484"/>
16 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="153.614">2</tspan></text>
17 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M85.04042 2.83484V-2.83484"/>
18 +<text xml:space="preserve" transform="matrix(1 0 -0 1 -.000015258789 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="181.96">3</tspan></text>
19 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-70.867 1.4174V-1.4174"/>
20 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-42.5202 1.4174V-1.4174"/>
21 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-14.17339 1.4174V-1.4174"/>
22 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M14.17339 1.4174V-1.4174"/>
23 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M42.5202 1.4174V-1.4174"/>
24 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M70.867 1.4174V-1.4174"/>
25 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-92.1271 22.67752V31.18166H-77.95372V22.67752ZM-77.95372 31.18166" fill="#ffffff"/>
26 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-92.1271 14.17339V28.3468H-77.95372V14.17339ZM-77.95372 28.3468"/>
27 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-35.43349 22.67752V31.18166H-21.2601V22.67752ZM-21.2601 31.18166" fill="#ffffff"/>
28 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-35.43349 14.17339V28.3468H-21.2601V14.17339ZM-21.2601 28.3468"/>
29 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-7.08669 22.67752V31.18166H7.08669V22.67752ZM7.08669 31.18166" fill="#ffffff"/>
30 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-7.08669 14.17339V28.3468H7.08669V14.17339ZM7.08669 28.3468"/>
31 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M7.08669 22.67752V31.18166H21.2601V22.67752ZM21.2601 31.18166" fill="#ffffff"/>
32 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M7.08669 14.17339V28.3468H21.2601V14.17339ZM21.2601 28.3468"/>
33 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M21.2601 22.67752V31.18166H35.43349V22.67752ZM35.43349 31.18166" fill="#ffffff"/>
34 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M21.2601 14.17339V28.3468H35.43349V14.17339ZM35.43349 28.3468"/>
35 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M77.95372 22.67752V31.18166H92.1271V22.67752ZM92.1271 31.18166" fill="#ffffff"/>
36 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M77.95372 14.17339V28.3468H92.1271V14.17339ZM92.1271 28.3468"/>
37 +</svg>
38 +
8und2^x.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Inhalt
8und2^x.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +126.7 KB
Inhalt
8undx^3.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +72.9 KB
Inhalt
8undx^3.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +51.4 KB
Inhalt
x^3 und 8.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.martinrathgeb
Größe
... ... @@ -1,0 +1,1 @@
1 +6.7 KB
Inhalt
... ... @@ -1,0 +1,38 @@
1 +<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" width="211.159" height="47.277" viewBox="0 0 211.159 47.277">
2 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-99.21382 0H98.75554"/>
3 +<path transform="matrix(1,0,0,-1,198.16754,31.182002)" stroke-width=".31879" stroke-linecap="round" stroke-linejoin="round" fill="none" stroke="#000000" d="M-1.19551 1.59401C-1.09587 .99626 0 .09961 .29886 0 0-.09961-1.09587-.99626-1.19551-1.59401"/>
4 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .000015258789 47.277)" font-size="9.9626" font-family="CMMI10" font-style="italic"><tspan y="-13.951" x="202.144">x</tspan></text>
5 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-85.04042 2.83484V-2.83484"/>
6 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000009536743 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="10.221 13.538546">-3</tspan></text>
7 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-56.69362 2.83484V-2.83484"/>
8 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="38.568 41.885549">-2</tspan></text>
9 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-28.3468 2.83484V-2.83484"/>
10 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="66.914 70.231548">-1</tspan></text>
11 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M0 2.83484V-2.83484"/>
12 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000076293949 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="96.921">0</tspan></text>
13 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M28.3468 2.83484V-2.83484"/>
14 +<text xml:space="preserve" transform="matrix(1 0 -0 1 .0000076293949 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="125.268">1</tspan></text>
15 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M56.69362 2.83484V-2.83484"/>
16 +<text xml:space="preserve" transform="matrix(1 0 -0 1 0 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="153.614">2</tspan></text>
17 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M85.04042 2.83484V-2.83484"/>
18 +<text xml:space="preserve" transform="matrix(1 0 -0 1 -.000015258789 47.277)" font-size="9.9626" font-family="CMR10"><tspan y="-3.321" x="181.96">3</tspan></text>
19 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-70.867 1.4174V-1.4174"/>
20 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-42.5202 1.4174V-1.4174"/>
21 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-14.17339 1.4174V-1.4174"/>
22 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M14.17339 1.4174V-1.4174"/>
23 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M42.5202 1.4174V-1.4174"/>
24 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".3985" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M70.867 1.4174V-1.4174"/>
25 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-92.1271 22.67752V31.18166H-77.95372V22.67752ZM-77.95372 31.18166" fill="#ffffff"/>
26 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-92.1271 14.17339V28.3468H-77.95372V14.17339ZM-77.95372 28.3468"/>
27 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-35.43349 22.67752V31.18166H-21.2601V22.67752ZM-21.2601 31.18166" fill="#ffffff"/>
28 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-35.43349 14.17339V28.3468H-21.2601V14.17339ZM-21.2601 28.3468"/>
29 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M-7.08669 22.67752V31.18166H7.08669V22.67752ZM7.08669 31.18166" fill="#ffffff"/>
30 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M-7.08669 14.17339V28.3468H7.08669V14.17339ZM7.08669 28.3468"/>
31 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M7.08669 22.67752V31.18166H21.2601V22.67752ZM21.2601 31.18166" fill="#ffffff"/>
32 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M7.08669 14.17339V28.3468H21.2601V14.17339ZM21.2601 28.3468"/>
33 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M21.2601 22.67752V31.18166H35.43349V22.67752ZM35.43349 31.18166" fill="#ffffff"/>
34 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M21.2601 14.17339V28.3468H35.43349V14.17339ZM35.43349 28.3468"/>
35 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" d="M77.95372 22.67752V31.18166H92.1271V22.67752ZM92.1271 31.18166" fill="#ffffff"/>
36 +<path transform="matrix(1,0,0,-1,99.412,31.182002)" stroke-width=".79701" stroke-linecap="butt" stroke-miterlimit="10" stroke-linejoin="miter" fill="none" stroke="#000000" d="M77.95372 14.17339V28.3468H92.1271V14.17339ZM92.1271 28.3468"/>
37 +</svg>
38 +