Zuletzt geändert von Holger Engels am 2025/05/21 15:19

Von Version 134.1
bearbeitet von Kim Fujan
am 2025/05/20 10:17
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 131.2
bearbeitet von Kim Fujan
am 2025/05/20 10:14
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -87,6 +87,7 @@
87 87  1. … die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
88 88  {{/aufgabe}}
89 89  
90 +
90 90  {{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}}
91 91  Ordne zu:
92 92  (% class="border slim" %)
... ... @@ -110,6 +110,7 @@
110 110  {{/aufgabe}}
111 111  
112 112  
114 +
113 113  {{aufgabe id="Gleichungen gemeinsamer Form" afb="III" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
114 114  Die Gleichungen sehen auf den ersten Blick unterschiedlich aus, weisen aber ähnliche Strukturen auf und können alle mithilfe der Substitution gelöst werden. Selbstverständlich gibt es für manche Teilaufgaben auch andere Lösungswege ohne Substitution.
115 115  (%class="abc"%)
... ... @@ -256,7 +256,7 @@
256 256  )))
257 257  {{/aufgabe}}
258 258  
259 -{{aufgabe id="Gleichungstypen einstudieren" afb="III" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
261 +{{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
260 260  Bestimme die Lösung der folgenden Gleichungen:
261 261  
262 262  (% class="border slim " %)
... ... @@ -267,6 +267,28 @@
267 267  |{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}}
268 268  {{/aufgabe}}
269 269  
272 +
273 +
274 +{{aufgabe id="Exponentialgleichungen" afb="I" kompetenzen="K5" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}}
275 +Bestimme die Lösungsmenge der folgenden Exponentialgleichungen
276 +(% class="abc" %)
277 +1. {{formula}} 3^{x+1}=81 {{/formula}}
278 +1. {{formula}} 5^{2x}=25^{2x+2} {{/formula}}
279 +1. {{formula}} 10^{x}=500{{/formula}}
280 +1. {{formula}} 2^{x+3}=4^{x-1} {{/formula}}
281 +{{/aufgabe}}
282 +
283 +{{aufgabe id="Exponentialgleichungen graphisch" afb="II" kompetenzen="K4,K6" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}}
284 +Löse mit Hilfe der nebenstehenden Abbildung folgende Exponentialgleichungen näherungsweise. Hinweis: Ordne die linke und die rechte Seite der jeweiligen Gleichung passend den Funktionsgraphen zu.
285 +(% class="abc" %)
286 +1. {{formula}} 2^x=(\frac{3}{4})^x+2 {{/formula}}
287 +1. {{formula}} 7-e^{x-3}=(\frac{3}{4})^x+2 {{/formula}}
288 +1. {{formula}} 2^x=1{,}5^{x+2}-0{,}5 {{/formula}}
289 +1. {{formula}} 7-e^{x-3}=4-\frac{1}{2}\,x {{/formula}}
290 +
291 +[[image:ExpGlei.svg||width="600px"]]
292 +{{/aufgabe}}
293 +
270 270  {{aufgabe id="Gleichungen aufstellen II" afb="III" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
271 271  Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll:
272 272  {{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}