Änderungen von Dokument BPE 4.5 Logarithmus und Exponentialgleichungen
Zuletzt geändert von akukin am 2025/08/11 14:43
Von Version 167.1
bearbeitet von Holger Engels
am 2025/05/26 08:44
am 2025/05/26 08:44
Änderungskommentar:
Neues Bild x^-3und8.svg hochladen
Auf Version 8.1
bearbeitet von holger
am 2023/05/20 08:32
am 2023/05/20 08:32
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 13 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.holger engels1 +XWiki.holger - Inhalt
-
... ... @@ -1,305 +1,12 @@ 1 -{{seiteninhalt/}} 1 +{{box cssClass="floatinginfobox" title="**Contents**"}} 2 +{{toc start=2 depth=2 /}} 3 +{{/box}} 2 2 5 +=== Kompetenzen === 6 + 3 3 [[Kompetenzen.K5]] Ich kann Logarithmus nutzen, um eine Exponentialgleichung zu lösen 4 4 [[Kompetenzen.K5]] Ich kann eine geeignete Strategie wählen, um eine gegebene Exponentialgleichung zu lösen 5 5 [[Kompetenzen.K1]] Ich kann die Wahl einer Lösungsstrategie für eine Exponentialgleichung begründen 6 6 [[Kompetenzen.K5]] Ich kann Exponentialgleichungen algebraisch lösen 7 -[[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren 8 -[[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren 9 - 10 -{{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}} 11 -Bestimme die Lösungsmenge der Exponentialgleichung: 12 -(% class="abc" %) 13 - 14 -1. {{formula}} e^x=3 {{/formula}} 15 -1. {{formula}} 2e^x-4=8 {{/formula}} 16 -1. {{formula}} 2e^{-0.5x}=6{{/formula}} 17 -1. {{formula}} e^x=-5 {{/formula}} 18 -1. {{formula}} 4\cdot 5^x=100 {{/formula}} 19 -{{/aufgabe}} 20 - 21 -{{aufgabe id="Exponentialgleichungen (Satz vom Nullprodukt)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 22 -Bestimme die Lösungsmenge der Gleichung: 23 -(% class="abc" %) 24 -1. {{formula}} 2x-x^{2}=0 {{/formula}} 25 -1. {{formula}} 2e^x-e^{2x}=0 {{/formula}} 26 -1. {{formula}} \frac{1}{3}e^x=e^{2x} {{/formula}} 27 -1. {{formula}} 3e^{-x}=2e^{2x} {{/formula}} 28 -1. {{formula}} 2x^e=x^{2e} {{/formula}} 29 -{{/aufgabe}} 30 - 31 -{{aufgabe id="Exponentialgleichungen (Substitution)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 32 -Bestimme die Lösungsmenge der Gleichung: 33 -(% class="abc" %) 34 -1. {{formula}} x^{2}-2x-3=0 {{/formula}} 35 -1. {{formula}} e^{2x}-2e^x-3=0 {{/formula}} 36 -1. {{formula}} e^x-2e^{\frac{1}{2}x}-3=0 {{/formula}} 37 -1. {{formula}} e^x-2-\frac{8}{e^x}}=0 {{/formula}} 38 -1. {{formula}} 2e^{4x}=e^{2x}+3 {{/formula}} 39 -{{/aufgabe}} 40 - 41 -{{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}} 42 -Ordne (ohne WTR!) die Terme ihren Werten gemäß den Kästchen über dem Zahlenstrahl zu. Trage dafür die jeweiligen Buchstaben in die Kästchen ein. 43 - 44 -[[image:Logarithmus_neu.svg||width="600px"]] 45 - 46 -(% class="abc" %) 47 -1. {{formula}} \log_{10}(0.1) {{/formula}} 48 -1. {{formula}} \log_{100}(0.1) {{/formula}} 49 -1. {{formula}} \log_{0.1}(0.1) {{/formula}} 50 -1. {{formula}} \log_{10}(1000) {{/formula}} 51 -1. {{formula}} \log_{10}(50) {{/formula}} 52 -1. {{formula}} \log_{0.1}(1000) {{/formula}} 53 -1. {{formula}} \log_{10}(1) {{/formula}} 54 -1. {{formula}} \log_{100}(10) {{/formula}} 55 -1. {{formula}} \log_{10}(10) {{/formula}} 56 -{{/aufgabe}} 57 - 58 -{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="I" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}} 59 -(% class="abc" %) 60 -Ermittle die Lösung der Gleichung {{formula}} e^x = 5 {{/formula}} graphisch und rechnerisch. 61 -{{/aufgabe}} 62 - 63 -{{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}} 64 -Nenne jeweils eine passende Gleichung: 65 - 66 -Die Gleichung kann ich nach x auflösen, indem ich … 67 -(% class="abc" %) 68 -1. … die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte. 69 -1. … von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte. 70 -1. … die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte. 71 -{{/aufgabe}} 72 - 73 -{{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}} 74 -Ordne zu: 75 -(% class="border slim" %) 76 -|Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder 77 -|{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \frac{1}{\sqrt[3]{8}} {{/formula}}|((( 78 -|x|0|1|2|3 79 -|y|1|2|4|8 80 -)))|[[image:2^xund8.svg||width="200px"]] 81 -|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = -\log_{2}(8) {{/formula}} |((( 82 -|x|0|1|2|3 83 -|y|n.d.|1|{{formula}}\frac{1}{8}{{/formula}}|{{formula}}\frac{1}{27}{{/formula}} 84 -)))|[[image:2^-xund8.svg||width="200px"]] 85 -|{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |((( 86 -|x|0|1|2|3 87 -|y|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}}|{{formula}}\frac{1}{8}{{/formula}} 88 -)))|[[image:x^-3und8.svg||width="200px"]] 89 -{{/aufgabe}} 90 - 91 -{{aufgabe id="Gleichungen gemeinsamer Form" afb="III" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}} 92 -Die Gleichungen sehen auf den ersten Blick unterschiedlich aus, weisen aber ähnliche Strukturen auf und können alle mithilfe der Substitution gelöst werden. Selbstverständlich gibt es für manche Teilaufgaben auch andere Lösungswege ohne Substitution. 93 -(%class="abc"%) 94 -1. ((( 95 -(%class="border slim"%) 96 -|(%align="center" width="160"%){{formula}}e^{2x}-4e^x+3=0{{/formula}} 97 - 98 -{{formula}}u:=\_\_\_{{/formula}} 99 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-4x^e+3=0{{/formula}} 100 - 101 -{{formula}}u:=\_\_\_{{/formula}} 102 -🠗|(%align="center" width="160"%){{formula}}x^{-2}-4x^{-1}+3=0{{/formula}} 103 - 104 -{{formula}}u:=\_\_\_{{/formula}} 105 -⬋ 106 -||(%align="center"%){{formula}}u^2-4u+3=0{{/formula}} 107 -((( 108 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 109 -| 110 - 111 - 112 -))) 113 - 114 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}| 115 -|(%align="center"%)(((⬋ 116 -{{formula}}\_\_\_:=u{{/formula}} 117 -((( 118 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 119 -| 120 - 121 - 122 -))) 123 -)))|(%align="center"%)(((🠗 124 -{{formula}}\_\_\_:=u{{/formula}} 125 -((( 126 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 127 -| 128 - 129 - 130 -))) 131 -)))|(%align="center"%)(((⬊ 132 -{{formula}}\_\_\_:=u{{/formula}} 133 -((( 134 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 135 -| 136 - 137 - 138 -))) 139 -))) 140 -))) 141 -1. ((( 142 -(%class="border slim"%) 143 -|(%align="center" width="160"%){{formula}}x^{-2}-3x^{-1}=0{{/formula}} 144 - 145 -{{formula}}u:=\_\_\_{{/formula}} 146 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-3x^e=0{{/formula}} 147 - 148 -{{formula}}u:=\_\_\_{{/formula}} 149 -🠗|(%align="center" width="160"%){{formula}}e^{2x}-3e^x=0{{/formula}} 150 - 151 -{{formula}}u:=\_\_\_{{/formula}} 152 -⬋ 153 -||(%align="center"%){{formula}}u^2-3u=0{{/formula}} 154 -((( 155 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 156 -| 157 - 158 - 159 -))) 160 - 161 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}| 162 -|(%align="center"%)(((⬋ 163 -{{formula}}\_\_\_:=u{{/formula}} 164 -((( 165 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 166 -| 167 - 168 - 169 -))) 170 -)))|(%align="center"%)(((🠗 171 -{{formula}}\_\_\_:=u{{/formula}} 172 -((( 173 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 174 -| 175 - 176 - 177 -))) 178 -)))|(%align="center"%)(((⬊ 179 -{{formula}}\_\_\_:=u{{/formula}} 180 -((( 181 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 182 -| 183 - 184 - 185 -))) 186 -))) 187 -))) 188 -1. ((( 189 -(%class="border slim"%) 190 -|(%align="center" width="160"%){{formula}}x^{-2}-2x^{-1}+3=0{{/formula}} 191 - 192 -{{formula}}u:=\_\_\_{{/formula}} 193 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-2x^e+3=0{{/formula}} 194 - 195 -{{formula}}u:=\_\_\_{{/formula}} 196 -🠗|(%align="center" width="160"%){{formula}}e^{2x}-2e^x+3=0{{/formula}} 197 - 198 -{{formula}}u:=\_\_\_{{/formula}} 199 -⬋ 200 -||(%align="center"%){{formula}}u^2-2u+3=0{{/formula}} 201 -((( 202 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 203 -| 204 - 205 - 206 -))) 207 - 208 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}| 209 -|(%align="center"%)(((⬋ 210 -{{formula}}\_\_\_:=u{{/formula}} 211 -((( 212 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 213 -| 214 - 215 - 216 -))) 217 -)))|(%align="center"%)(((🠗 218 -{{formula}}\_\_\_:=u{{/formula}} 219 -((( 220 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 221 -| 222 - 223 - 224 -))) 225 -)))|(%align="center"%)(((⬊ 226 -{{formula}}\_\_\_:=u{{/formula}} 227 -((( 228 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%) 229 -| 230 - 231 - 232 -))) 233 -))) 234 -))) 235 -{{/aufgabe}} 236 - 237 -{{aufgabe id="Gleichungstypen einstudieren" afb="III" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}} 238 -Bestimme die Lösung der folgenden Gleichungen: 239 - 240 -(% class="border slim " %) 241 -|Typ 1 (Umkehroperationen)|Typ 2 (Ausklammern)|Typ 3 (Substitution) 242 -|{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}} 243 -|{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2e}+x^e+1 = 0{{/formula}} 244 -|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}} 245 -|{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}} 246 -{{/aufgabe}} 247 - 248 -{{aufgabe id=" Exponentialgleichungen rückwärts lösen" afb="II" kompetenzen="K2,K5" quelle="Martina Wagner" lizenz="BY-SA"}} 249 -(% class="abc" %) 250 -1. ((({{{ }}} 251 - 252 -{{formula}} 253 -\begin{align*} 254 -\square e^x-2 &= 0\\ 255 -\square e^x &=\square\quad \left|:\square\\ 256 -e^x &= \square \\ 257 -x &= 0 258 -\end{align*} 259 -{{/formula}} 260 -))) 261 -1. ((({{{ }}} 262 - 263 -{{formula}} 264 -\begin{align*} 265 -e^{2x}-\square e^x &= 0 \\ 266 -e^x \cdot (\square-\square) &= 0 \left|\left| \text{ SVNP } 267 -\end{align*} 268 -{{/formula}} 269 - 270 -{{formula}} 271 -e^x \neq 0 ~und~ e^x-\square = 0{{/formula}} 272 -{{formula}} e^x=\square {{/formula}} 273 -{{formula}} x =\square {{/formula}} 274 -))) 275 -1. ((({{{ }}} 276 - 277 -{{formula}} 278 -\begin{align*} 279 -e^{2x}-\square e^x+\square &= 0 \quad \left|\left|\text{ Subst.: } e^x:=\square\\ 280 -z^2-\square z + \square &= 0 \quad \left|\left|\text{ Mitternachtsformel/abc-Formel } & 281 -\end{align*} 282 -{{/formula}} 283 - 284 -{{formula}} 285 -\begin{align*} 286 -\Rightarrow z_{1,2}&=\frac{\square\pm\sqrt{\square^2-4\cdot\square\cdot\square}}{2\cdot\square}\\ 287 -z_{1,2}&=\frac{\square+\square}{\square} 288 -\end{align*} 289 -{{/formula}} 290 - 291 -{{formula}} 292 -\begin{align*} 293 -&\text{Resubst.: } z:= e^x\\ 294 -&e^x=\square \Rightarrow x \approx 0,693147...\\ 295 -\end{align*} 296 -{{/formula}} 297 -))) 298 -{{/aufgabe}} 299 - 300 -{{aufgabe id="Gleichungen aufstellen II" afb="III" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}} 301 -Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll: 302 -{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}} 303 -{{/aufgabe}} 304 - 305 -{{seitenreflexion/}} 11 +[[Kompetenzen.K5]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren 12 +[[Kompetenzen.K5]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren
- 2^-xund8.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.elkehallmanngmxde - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -65.6 KB - Inhalt
- 2^-xund8.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.elkehallmanngmxde - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -52.7 KB - Inhalt
- 2^xund8.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.dirktebbe - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -60.0 KB - Inhalt
- 2^xund8.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.dirktebbe - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -50.3 KB - Inhalt
- BPE 4.5 A Gleichungen Gemeinsamer Form.pdf
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -562.4 KB - Inhalt
- ExpGlei.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.niklaswunder - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -256.5 KB - Inhalt
- Logarithmus.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -7.5 KB - Inhalt
- Logarithmus_neu.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.martinrathgeb - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -7.5 KB - Inhalt
- SchaubilderExp.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.niklaswunder - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -29.9 KB - Inhalt
- x^-3und8.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.elkehallmanngmxde - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -70.0 KB - Inhalt
- x^-3und8.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -22.0 KB - Inhalt
-
... ... @@ -1,1 +1,0 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="320" height="492"><defs><clipPath id="RzybEvQSnaLz"><path fill="none" stroke="none" d=" M 0 0 L 320 0 L 320 492 L 0 492 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#RzybEvQSnaLz)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="320" height="492" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 5.5 0.5 L 5.5 492.5 M 5.5 0.5 L 5.5 492.5 M 55.5 0.5 L 55.5 492.5 M 105.5 0.5 L 105.5 492.5 M 205.5 0.5 L 205.5 492.5 M 255.5 0.5 L 255.5 492.5 M 305.5 0.5 L 305.5 492.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 15.5 0.5 L 15.5 492.5 M 25.5 0.5 L 25.5 492.5 M 35.5 0.5 L 35.5 492.5 M 45.5 0.5 L 45.5 492.5 M 65.5 0.5 L 65.5 492.5 M 75.5 0.5 L 75.5 492.5 M 85.5 0.5 L 85.5 492.5 M 95.5 0.5 L 95.5 492.5 M 115.5 0.5 L 115.5 492.5 M 125.5 0.5 L 125.5 492.5 M 135.5 0.5 L 135.5 492.5 M 145.5 0.5 L 145.5 492.5 M 165.5 0.5 L 165.5 492.5 M 175.5 0.5 L 175.5 492.5 M 185.5 0.5 L 185.5 492.5 M 195.5 0.5 L 195.5 492.5 M 215.5 0.5 L 215.5 492.5 M 225.5 0.5 L 225.5 492.5 M 235.5 0.5 L 235.5 492.5 M 245.5 0.5 L 245.5 492.5 M 265.5 0.5 L 265.5 492.5 M 275.5 0.5 L 275.5 492.5 M 285.5 0.5 L 285.5 492.5 M 295.5 0.5 L 295.5 492.5 M 315.5 0.5 L 315.5 492.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 39.5 L 320.5 39.5 M 0.5 39.5 L 320.5 39.5 M 0.5 89.5 L 320.5 89.5 M 0.5 139.5 L 320.5 139.5 M 0.5 189.5 L 320.5 189.5 M 0.5 239.5 L 320.5 239.5 M 0.5 289.5 L 320.5 289.5 M 0.5 339.5 L 320.5 339.5 M 0.5 389.5 L 320.5 389.5 M 0.5 489.5 L 320.5 489.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 320.5 9.5 M 0.5 9.5 L 320.5 9.5 M 0.5 19.5 L 320.5 19.5 M 0.5 29.5 L 320.5 29.5 M 0.5 49.5 L 320.5 49.5 M 0.5 59.5 L 320.5 59.5 M 0.5 69.5 L 320.5 69.5 M 0.5 79.5 L 320.5 79.5 M 0.5 99.5 L 320.5 99.5 M 0.5 109.5 L 320.5 109.5 M 0.5 119.5 L 320.5 119.5 M 0.5 129.5 L 320.5 129.5 M 0.5 149.5 L 320.5 149.5 M 0.5 159.5 L 320.5 159.5 M 0.5 169.5 L 320.5 169.5 M 0.5 179.5 L 320.5 179.5 M 0.5 199.5 L 320.5 199.5 M 0.5 209.5 L 320.5 209.5 M 0.5 219.5 L 320.5 219.5 M 0.5 229.5 L 320.5 229.5 M 0.5 249.5 L 320.5 249.5 M 0.5 259.5 L 320.5 259.5 M 0.5 269.5 L 320.5 269.5 M 0.5 279.5 L 320.5 279.5 M 0.5 299.5 L 320.5 299.5 M 0.5 309.5 L 320.5 309.5 M 0.5 319.5 L 320.5 319.5 M 0.5 329.5 L 320.5 329.5 M 0.5 349.5 L 320.5 349.5 M 0.5 359.5 L 320.5 359.5 M 0.5 369.5 L 320.5 369.5 M 0.5 379.5 L 320.5 379.5 M 0.5 399.5 L 320.5 399.5 M 0.5 409.5 L 320.5 409.5 M 0.5 419.5 L 320.5 419.5 M 0.5 429.5 L 320.5 429.5 M 0.5 449.5 L 320.5 449.5 M 0.5 459.5 L 320.5 459.5 M 0.5 469.5 L 320.5 469.5 M 0.5 479.5 L 320.5 479.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 2.5 L 155.5 492.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 151.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 159.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="302" y="435" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">x</text><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 439.5 L 318.5 439.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 435.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 443.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="50" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="100" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="253" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="303" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="160" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">y</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="394" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="344" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="294" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="244" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="194" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="144" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="94" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">7</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="44" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(224,116,21)" paint-order="fill stroke markers" d=" M 1 441.5984372289223 L 1 441.6311990587012 L 1 441.6311990587012 L 2 441.6648220360863 L 2 441.6648220360863 L 3 441.6993346422053 L 3 441.6993346422053 L 4 441.7347664960673 L 4 441.7347664960673 L 5 441.7711484079558 L 5 441.7711484079558 L 6 441.8085124357038 L 6 441.8085124357038 L 7 441.8468919440279 L 7 441.8468919440279 L 8 441.8863216671096 L 8 441.8863216671096 L 9 441.92683777462474 L 9 441.92683777462474 L 10 441.96847794143713 L 10 441.96847794143713 L 11 442.01128142118534 L 11 442.01128142118534 L 12 442.0552891240108 L 12 442.0552891240108 L 13 442.10054369868976 L 13 442.10054369868976 L 14 442.1470896194525 L 14 442.1470896194525 L 15 442.1949732777928 L 15 442.1949732777928 L 16 442.2442430795928 L 16 442.2442430795928 L 17 442.29494954791153 L 17 442.29494954791153 L 18 442.3471454318119 L 18 442.3471454318119 L 19 442.4008858216281 L 19 442.4008858216281 L 20 442.45622827110486 L 20 442.45622827110486 L 21 442.5132329268738 L 21 442.5132329268738 L 22 442.5719626657655 L 22 442.5719626657655 L 23 442.6324832404958 L 23 442.6324832404958 L 24 442.6948634343043 L 24 442.6948634343043 L 25 442.7591752251696 L 25 442.7591752251696 L 26 442.82549396027326 L 26 442.82549396027326 L 27 442.89389854143747 L 27 442.89389854143747 L 27.999999999999986 442.9644716223197 L 27.999999999999986 442.9644716223197 L 28.999999999999986 443.0372998182093 L 28.999999999999986 443.0372998182093 L 30 443.11247392933893 L 30 443.11247392933893 L 31 443.1900891786993 L 31 443.1900891786993 L 32 443.2702454654239 L 32 443.2702454654239 L 33 443.35304763490217 L 33 443.35304763490217 L 34 443.4386057668715 L 34 443.4386057668715 L 35 443.52703548284734 L 35 443.52703548284734 L 36 443.6184582743638 L 36 443.6184582743638 L 37.000000000000014 443.71300185362173 L 37.000000000000014 443.71300185362173 L 37.999999999999986 443.81080052828236 L 37.999999999999986 443.81080052828236 L 38.999999999999986 443.91199560229035 L 38.999999999999986 443.91199560229035 L 39.999999999999986 444.0167358047804 L 39.999999999999986 444.0167358047804 L 41 444.12517774929853 L 41 444.12517774929853 L 42 444.23748642577095 L 42 444.23748642577095 L 43 444.3538357278717 L 43 444.3538357278717 L 44 444.47440901867867 L 44 444.47440901867867 L 45 444.59939973777637 L 45 444.59939973777637 L 46 444.7290120532512 L 46 444.7290120532512 L 47 444.86346156235044 L 47 444.86346156235044 L 47.999999999999986 445.0029760449277 L 47.999999999999986 445.0029760449277 L 48.999999999999986 445.14779627419335 L 48.999999999999986 445.14779627419335 L 49.999999999999986 445.29817688971826 L 49.999999999999986 445.29817688971826 L 50.999999999999986 445.45438733812153 L 50.999999999999986 445.45438733812153 L 52 445.61671288740354 L 52 445.61671288740354 L 53 445.7854557214735 L 53 445.7854557214735 L 54 445.9609361220771 L 54 445.9609361220771 L 55 446.1434937460527 L 55 446.1434937460527 L 56 446.3334890066557 L 56 446.3334890066557 L 57 446.53130456858736 L 57 446.53130456858736 L 58 446.73734696736636 L 58 446.73734696736636 L 58.999999999999986 446.952048364801 L 58.999999999999986 446.952048364801 L 60 447.17586845356556 L 60 447.17586845356556 L 61 447.4092965252816 L 61 447.4092965252816 L 61.999999999999986 447.6528537180662 L 61.999999999999986 447.6528537180662 L 63 447.9070954612595 L 63 447.9070954612595 L 64 448.17261413700834 L 64 448.17261413700834 L 65 448.45004198058894 L 65 448.45004198058894 L 66 448.74005424383085 L 66 448.74005424383085 L 66.99999999999999 449.0433726488026 L 66.99999999999999 449.0433726488026 L 68 449.36076916206554 L 68 449.36076916206554 L 69 449.6930701233647 L 69 449.6930701233647 L 70 450.0411607666442 L 70 450.0411607666442 L 71 450.4059901758316 L 71 450.4059901758316 L 71.99999999999999 450.7885767229984 L 71.99999999999999 450.7885767229984 L 72.99999999999999 451.1900140423675 L 72.99999999999999 451.1900140423675 L 74 451.61147760030644 L 74 451.61147760030644 L 75 452.0542319290382 L 75 452.0542319290382 L 76 452.51963860046544 L 76 452.51963860046544 L 77 453.00916502639683 L 77 453.00916502639683 L 77.99999999999999 453.5243941827941 L 77.99999999999999 453.5243941827941 L 79 454.06703536863506 L 79 454.06703536863506 L 80 454.63893612489795 L 80 454.63893612489795 L 81 455.24209545631686 L 81 455.24209545631686 L 82 455.8786785183174 L 82 455.8786785183174 L 82.99999999999999 456.5510329543527 L 82.99999999999999 456.5510329543527 L 83.99999999999999 457.2617070952477 L 83.99999999999999 457.2617070952477 L 85 458.0134702627361 L 85 458.0134702627361 L 86 458.80933545489256 L 86 458.80933545489256 L 87 459.652584732483 L 87 459.652584732483 L 88 460.5467976734527 L 88 460.5467976734527 L 88.99999999999999 461.49588331909354 L 88.99999999999999 461.49588331909354 L 90 462.5041161014039 L 90 462.5041161014039 L 91 463.57617631861444 L 91 463.57617631861444 L 92 464.7171958170026 L 92 464.7171958170026 L 93 465.93280964465885 L 93 465.93280964465885 L 94 467.22921457005083 L 94 467.22921457005083 L 95 468.613235509051 L 95 468.613235509051 L 96 470.0924010834111 L 96 470.09240108341106 L 97 471.6750297474711 L 97 471.6750297474711 L 98 473.3703281755346 L 98 473.37032817553455 L 99 475.1885039089298 L 99 475.1885039089298 L 100 477.1408946305759 L 100 477.1408946305759 L 101 479.24011687992066 L 101 479.24011687992066 L 102 481.50023755993914 L 102 481.50023755993914 L 103 483.9369722424425 L 103 483.93697224244244 L 103.99999999999999 486.5679150759227 L 103.99999999999999 486.5679150759227 L 105 489.4128060765053 L 105 489.4128060765053 L 106 492.4938427817044 L 106 492.4938427817044 L 107 495.83604472519585 L 107 495.83604472519585 L 108 499.4676810212861 L 108 499.46768102128607 L 109 503.42077362357173 L 109 503.42077362357173 L 109.1343626510533 504 M 155.16646421146734 -12 L 179.1875893002326 -12 L 180 31.54838744950149 L 180 31.548387449501377 L 181 77.17001442756452 L 181 77.17001442756441 L 182 116.2415509220092 L 182 116.24155092200908 L 183 149.89756934943307 L 183 149.89756934943296 L 184 179.04475110972407 L 184 179.04475110972396 L 185 204.41355115740438 L 185 204.41355115740436 L 186 226.5968986240148 L 186 226.59689862401476 L 187 246.07948126043223 L 187 246.07948126043215 L 188 263.2601146779506 L 188 263.26011467795047 L 189 278.468980542806 L 189 278.46898054280587 L 190 291.98102072924087 L 190 291.98102072924087 L 191 304.02642551989743 L 191 304.02642551989743 L 192 314.7989063209701 L 192 314.7989063209701 L 193 324.46226578080405 L 193 324.462265780804 L 194 333.1556495950451 L 194 333.1556495950451 L 195 340.9977702770228 L 195 340.99777027702277 L 196 348.09032385648743 L 196 348.0903238564874 L 197 354.5207689350642 L 197 354.52076893506415 L 198 360.3645989108604 L 198 360.36459891086037 L 199 365.687209033651 L 199 365.687209033651 L 200 370.54543779053273 L 200 370.5454377905327 L 201 374.98884516081705 L 201 374.98884516081705 L 202 379.0607772148601 L 202 379.0607772148601 L 203 382.79925640775224 L 203 382.79925640775224 L 204 386.2377290279134 L 204 386.2377290279134 L 205 389.40569507599446 L 205 389.4056950759944 L 206 392.3292409763769 L 206 392.3292409763769 L 207 395.03149166433957 L 207 395.0314916643395 L 208 397.53299552077874 L 208 397.53299552077874 L 209 399.8520531708982 L 209 399.8520531708982 L 209.99999999999997 402.004999191277 L 209.99999999999997 402.004999191277 L 211 404.0064441791733 L 211 404.0064441791733 L 212 405.8694833497213 L 212 405.8694833497213 L 213 407.6058767792038 L 213 407.6058767792038 L 214 409.2262055575755 L 214 409.2262055575755 L 215 410.74000741293224 L 215 410.74000741293224 L 216 412.15589479469566 L 216 412.15589479469566 L 217 413.48165792713183 L 217 413.4816579271318 L 218 414.7243549515175 L 218 414.7243549515175 L 219 415.8903909486619 L 219 415.8903909486619 L 220 416.98558736143553 L 220 416.98558736143553 L 221 418.01524310966187 L 221 418.0152431096618 L 222 418.98418849927396 L 222 418.98418849927396 L 223 419.89683286761044 L 223 419.89683286761044 L 224 420.7572067718936 L 224 420.7572067718936 L 225 421.56899941403515 L 225 421.56899941403515 L 226 422.3355918984485 L 226 422.3355918984485 L 227 423.06008683764924 L 227 423.06008683764924 L 228 423.745334750721 L 228 423.745334750721 L 229 424.3939576402675 L 229 424.3939576402675 L 230 425.0083700826312 L 230 425.0083700826312 L 231 425.59079812260035 L 231 425.59079812260035 L 232 426.1432962264187 L 232 426.1432962264187 L 233 426.6677625147233 L 233 426.6677625147233 L 234 427.16595246928244 L 234 427.16595246928244 L 235 427.639491283427 L 235 427.639491283427 L 236 428.0898850053108 L 236 428.0898850053108 L 237 428.51853060513776 L 237 428.5185306051377 L 238 428.9267250818516 L 238 428.9267250818516 L 239 429.3156737111749 L 239 429.3156737111749 L 240 429.686497525013 L 240 429.686497525013 L 241 430.0402401018784 L 241 430.0402401018784 L 242 430.37787373891865 L 242 430.37787373891865 L 243 430.700305068192 L 243 430.700305068192 L 244 431.00838017285866 L 244 431.00838017285866 L 245 431.30288925283037 L 245 431.30288925283037 L 246 431.5845708840267 L 246 431.5845708840267 L 247 431.85411591063087 L 247 431.85411591063087 L 248 432.11217100554126 L 248 432.11217100554126 L 249 432.35934193050366 L 249 432.35934193050366 L 250 432.5961965241238 L 250 432.5961965241238 L 251 432.8232674430493 L 251 432.8232674430493 L 252 433.04105467902474 L 252 433.04105467902474 L 253 433.2500278722263 L 253 433.2500278722263 L 254 433.45062843923995 L 254 433.45062843923995 L 255 433.6432715322246 L 255 433.6432715322246 L 256 433.8283478441797 L 256 433.8283478441797 L 257 434.0062252737829 L 257 434.0062252737829 L 258 434.1772504619704 L 258 434.1772504619704 L 259 434.3417502112684 L 259 434.3417502112684 L 260 434.50003279784585 L 260 434.50003279784585 L 261 434.6523891853258 L 261 434.6523891853258 L 262 434.7990941485523 L 262 434.7990941485523 L 263 434.9404073147606 L 263 434.9404073147606 L 264 435.0765741289159 L 264 435.0765741289159 L 265 435.2078267493799 L 265 435.2078267493799 L 266 435.3343848795094 L 266 435.3343848795094 L 267 435.4564565402997 L 267 435.4564565402997 L 268 435.5742387887304 L 268 435.5742387887304 L 269 435.6879183860713 L 269 435.6879183860713 L 270 435.79767242003453 L 270 435.79767242003453 L 271 435.903668884329 L 271 435.903668884329 L 272 436.00606721886953 L 272 436.00606721886953 L 273 436.10501881362114 L 273 436.10501881362114 L 274 436.20066747880907 L 274 436.20066747880907 L 275 436.2931498839995 L 275 436.2931498839995 L 276 436.3825959683502 L 276 436.3825959683502 L 277 436.46912932414403 L 277 436.46912932414403 L 278 436.55286755554613 L 278 436.55286755554613 L 279 436.63392261437133 L 279 436.63392261437133 L 280 436.7124011145059 L 280 436.7124011145059 L 281 436.78840462649833 L 281 436.78840462649833 L 282 436.86202995371514 L 282 436.86202995371514 L 283 436.93336939134923 L 283 436.93336939134923 L 284 437.00251096947 L 284 437.00251096947 L 285 437.0695386812121 L 285 437.0695386812121 L 286 437.13453269711806 L 286 437.13453269711806 L 287 437.1975695665724 L 287 437.1975695665724 L 288 437.25872240719536 L 288 437.25872240719536 L 289 437.3180610830001 L 289 437.3180610830001 L 290 437.37565237205746 L 290 437.3756523720574 L 291 437.43156012435867 L 291 437.43156012435867 L 292 437.485845410516 L 292 437.485845410516 L 293 437.53856666189495 L 293 437.53856666189495 L 294 437.5897798027298 L 294 437.5897798027298 L 295 437.6395383747349 L 295 437.6395383747349 L 296 437.68789365468706 L 296 437.68789365468706 L 297 437.73489476542284 L 297 437.73489476542284 L 298 437.78058878066264 L 298 437.78058878066264 L 299 437.8250208240443 L 299 437.8250208240443 L 300 437.86823416272495 L 300 437.86823416272495 L 301 437.91027029588247 L 301 437.91027029588247 L 302 437.9511690384286 L 302 437.9511690384286 L 303 437.9909686002219 L 303 437.9909686002219 L 304 438.0297056610519 L 304 438.0297056610519 L 305 438.0674154416462 L 305 438.0674154416462 L 306 438.104131770936 L 306 438.104131770936 L 307 438.13988714980144 L 307 438.13988714980144 L 308 438.17471281150137 L 308 438.17471281150137 L 309 438.2086387789811 L 309 438.2086387789811 L 310 438.24169391923857 L 310 438.24169391923857 L 311 438.2739059949168 L 311 438.2739059949168 L 312 438.3053017132818 L 312 438.3053017132818 L 313 438.3359067727336 L 313 438.3359067727336 L 314 438.36574590698933 L 314 438.36574590698933 L 315 438.3948429270685 L 315 438.3948429270685 L 316 438.4232207612031 L 316 438.4232207612031 L 317 438.4509014927868 L 317 438.4509014927868 L 318 438.47790639647104 L 318 438.47790639647104 L 319 438.50425597250984 L 319 438.50425597250984 L 320 438.52996997944683" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(224,116,21)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="24" y="465" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(224,116,21)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="35" y="472" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f</text><path fill="none" stroke="rgb(176,0,32)" paint-order="fill stroke markers" d=" M -5 39.92565708998899 L 325 39.92565708998899" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="59" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="71" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">g</text></g></g></svg>
- x^3und8.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.dirktebbe - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -61.4 KB - Inhalt
- x^3und8.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.dirktebbe - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -52.9 KB - Inhalt