Zuletzt geändert von akukin am 2025/08/11 14:43

Von Version 168.1
bearbeitet von Holger Engels
am 2025/05/26 08:44
Änderungskommentar: Neues Bild 2^-xund8.svg hochladen
Auf Version 11.1
bearbeitet von Niklas Wunder
am 2024/12/18 13:31
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.niklaswunder
Inhalt
... ... @@ -1,5 +1,9 @@
1 -{{seiteninhalt/}}
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
2 +{{toc start=2 depth=2 /}}
3 +{{/box}}
2 2  
5 +=== Kompetenzen ===
6 +
3 3  [[Kompetenzen.K5]] Ich kann Logarithmus nutzen, um eine Exponentialgleichung zu lösen
4 4  [[Kompetenzen.K5]] Ich kann eine geeignete Strategie wählen, um eine gegebene Exponentialgleichung zu lösen
5 5  [[Kompetenzen.K1]] Ich kann die Wahl einer Lösungsstrategie für eine Exponentialgleichung begründen
... ... @@ -7,299 +7,8 @@
7 7  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren
9 9  
10 -{{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}}
11 -Bestimme die Lösungsmenge der Exponentialgleichung:
12 -(% class="abc" %)
13 13  
14 -1. {{formula}} e^x=3 {{/formula}}
15 -1. {{formula}} 2e^x-4=8 {{/formula}}
16 -1. {{formula}} 2e^{-0.5x}=6{{/formula}}
17 -1. {{formula}} e^x=-5 {{/formula}}
18 -1. {{formula}} 4\cdot 5^x=100 {{/formula}}
19 -{{/aufgabe}}
15 +{{aufgabe id="Exponentialgleichungen" afb="I" kompetenzen="K1-K6" quelle="Niklas Wunder" cc="BY-SA" zeit="5"}}
16 +Bestimme die Lösungsmenge der folgenden Exponentialgleichungen
20 20  
21 -{{aufgabe id="Exponentialgleichungen (Satz vom Nullprodukt)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
22 -Bestimme die Lösungsmenge der Gleichung:
23 -(% class="abc" %)
24 -1. {{formula}} 2x-x^{2}=0 {{/formula}}
25 -1. {{formula}} 2e^x-e^{2x}=0 {{/formula}}
26 -1. {{formula}} \frac{1}{3}e^x=e^{2x} {{/formula}}
27 -1. {{formula}} 3e^{-x}=2e^{2x} {{/formula}}
28 -1. {{formula}} 2x^e=x^{2e} {{/formula}}
29 29  {{/aufgabe}}
30 -
31 -{{aufgabe id="Exponentialgleichungen (Substitution)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
32 -Bestimme die Lösungsmenge der Gleichung:
33 -(% class="abc" %)
34 -1. {{formula}} x^{2}-2x-3=0 {{/formula}}
35 -1. {{formula}} e^{2x}-2e^x-3=0 {{/formula}}
36 -1. {{formula}} e^x-2e^{\frac{1}{2}x}-3=0 {{/formula}}
37 -1. {{formula}} e^x-2-\frac{8}{e^x}}=0 {{/formula}}
38 -1. {{formula}} 2e^{4x}=e^{2x}+3 {{/formula}}
39 -{{/aufgabe}}
40 -
41 -{{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
42 -Ordne (ohne WTR!) die Terme ihren Werten gemäß den Kästchen über dem Zahlenstrahl zu. Trage dafür die jeweiligen Buchstaben in die Kästchen ein.
43 -
44 -[[image:Logarithmus_neu.svg||width="600px"]]
45 -
46 -(% class="abc" %)
47 -1. {{formula}} \log_{10}(0.1) {{/formula}}
48 -1. {{formula}} \log_{100}(0.1) {{/formula}}
49 -1. {{formula}} \log_{0.1}(0.1) {{/formula}}
50 -1. {{formula}} \log_{10}(1000) {{/formula}}
51 -1. {{formula}} \log_{10}(50) {{/formula}}
52 -1. {{formula}} \log_{0.1}(1000) {{/formula}}
53 -1. {{formula}} \log_{10}(1) {{/formula}}
54 -1. {{formula}} \log_{100}(10) {{/formula}}
55 -1. {{formula}} \log_{10}(10) {{/formula}}
56 -{{/aufgabe}}
57 -
58 -{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="I" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
59 -(% class="abc" %)
60 -Ermittle die Lösung der Gleichung {{formula}} e^x = 5 {{/formula}} graphisch und rechnerisch.
61 -{{/aufgabe}}
62 -
63 -{{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
64 -Nenne jeweils eine passende Gleichung:
65 -
66 -Die Gleichung kann ich nach x auflösen, indem ich …
67 -(% class="abc" %)
68 -1. … die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
69 -1. … von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
70 -1. … die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
71 -{{/aufgabe}}
72 -
73 -{{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}}
74 -Ordne zu:
75 -(% class="border slim" %)
76 -|Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder
77 -|{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \frac{1}{\sqrt[3]{8}} {{/formula}}|(((
78 -|x|0|1|2|3
79 -|y|1|2|4|8
80 -)))|[[image:2^xund8.svg||width="200px"]]
81 -|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = -\log_{2}(8) {{/formula}} |(((
82 -|x|0|1|2|3
83 -|y|n.d.|1|{{formula}}\frac{1}{8}{{/formula}}|{{formula}}\frac{1}{27}{{/formula}}
84 -)))|[[image:2^-xund8.svg||width="200px"]]
85 -|{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |(((
86 -|x|0|1|2|3
87 -|y|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}}|{{formula}}\frac{1}{8}{{/formula}}
88 -)))|[[image:x^-3und8.svg||width="200px"]]
89 -{{/aufgabe}}
90 -
91 -{{aufgabe id="Gleichungen gemeinsamer Form" afb="III" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
92 -Die Gleichungen sehen auf den ersten Blick unterschiedlich aus, weisen aber ähnliche Strukturen auf und können alle mithilfe der Substitution gelöst werden. Selbstverständlich gibt es für manche Teilaufgaben auch andere Lösungswege ohne Substitution.
93 -(%class="abc"%)
94 -1. (((
95 -(%class="border slim"%)
96 -|(%align="center" width="160"%){{formula}}e^{2x}-4e^x+3=0{{/formula}}
97 -
98 -{{formula}}u:=\_\_\_{{/formula}}
99 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-4x^e+3=0{{/formula}}
100 -
101 -{{formula}}u:=\_\_\_{{/formula}}
102 -🠗|(%align="center" width="160"%){{formula}}x^{-2}-4x^{-1}+3=0{{/formula}}
103 -
104 -{{formula}}u:=\_\_\_{{/formula}}
105 -⬋
106 -||(%align="center"%){{formula}}u^2-4u+3=0{{/formula}}
107 -(((
108 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
109 -|
110 -
111 -
112 -)))
113 -
114 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
115 -|(%align="center"%)(((⬋
116 -{{formula}}\_\_\_:=u{{/formula}}
117 -(((
118 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
119 -|
120 -
121 -
122 -)))
123 -)))|(%align="center"%)(((🠗
124 -{{formula}}\_\_\_:=u{{/formula}}
125 -(((
126 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
127 -|
128 -
129 -
130 -)))
131 -)))|(%align="center"%)(((⬊
132 -{{formula}}\_\_\_:=u{{/formula}}
133 -(((
134 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
135 -|
136 -
137 -
138 -)))
139 -)))
140 -)))
141 -1. (((
142 -(%class="border slim"%)
143 -|(%align="center" width="160"%){{formula}}x^{-2}-3x^{-1}=0{{/formula}}
144 -
145 -{{formula}}u:=\_\_\_{{/formula}}
146 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-3x^e=0{{/formula}}
147 -
148 -{{formula}}u:=\_\_\_{{/formula}}
149 -🠗|(%align="center" width="160"%){{formula}}e^{2x}-3e^x=0{{/formula}}
150 -
151 -{{formula}}u:=\_\_\_{{/formula}}
152 -⬋
153 -||(%align="center"%){{formula}}u^2-3u=0{{/formula}}
154 -(((
155 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
156 -|
157 -
158 -
159 -)))
160 -
161 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
162 -|(%align="center"%)(((⬋
163 -{{formula}}\_\_\_:=u{{/formula}}
164 -(((
165 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
166 -|
167 -
168 -
169 -)))
170 -)))|(%align="center"%)(((🠗
171 -{{formula}}\_\_\_:=u{{/formula}}
172 -(((
173 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
174 -|
175 -
176 -
177 -)))
178 -)))|(%align="center"%)(((⬊
179 -{{formula}}\_\_\_:=u{{/formula}}
180 -(((
181 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
182 -|
183 -
184 -
185 -)))
186 -)))
187 -)))
188 -1. (((
189 -(%class="border slim"%)
190 -|(%align="center" width="160"%){{formula}}x^{-2}-2x^{-1}+3=0{{/formula}}
191 -
192 -{{formula}}u:=\_\_\_{{/formula}}
193 -⬊|(%align="center" width="160"%){{formula}}x^{2e}-2x^e+3=0{{/formula}}
194 -
195 -{{formula}}u:=\_\_\_{{/formula}}
196 -🠗|(%align="center" width="160"%){{formula}}e^{2x}-2e^x+3=0{{/formula}}
197 -
198 -{{formula}}u:=\_\_\_{{/formula}}
199 -⬋
200 -||(%align="center"%){{formula}}u^2-2u+3=0{{/formula}}
201 -(((
202 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
203 -|
204 -
205 -
206 -)))
207 -
208 -{{formula}}u_1=\_\_\_\quad;\quad u_2=\_\_\_{{/formula}}|
209 -|(%align="center"%)(((⬋
210 -{{formula}}\_\_\_:=u{{/formula}}
211 -(((
212 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
213 -|
214 -
215 -
216 -)))
217 -)))|(%align="center"%)(((🠗
218 -{{formula}}\_\_\_:=u{{/formula}}
219 -(((
220 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
221 -|
222 -
223 -
224 -)))
225 -)))|(%align="center"%)(((⬊
226 -{{formula}}\_\_\_:=u{{/formula}}
227 -(((
228 -(%class="border slim" style="width: 100%; margin-bottom: 0px"%)
229 -|
230 -
231 -
232 -)))
233 -)))
234 -)))
235 -{{/aufgabe}}
236 -
237 -{{aufgabe id="Gleichungstypen einstudieren" afb="III" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
238 -Bestimme die Lösung der folgenden Gleichungen:
239 -
240 -(% class="border slim " %)
241 -|Typ 1 (Umkehroperationen)|Typ 2 (Ausklammern)|Typ 3 (Substitution)
242 -|{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}}
243 -|{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2e}+x^e+1 = 0{{/formula}}
244 -|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}}
245 -|{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}}
246 -{{/aufgabe}}
247 -
248 -{{aufgabe id=" Exponentialgleichungen rückwärts lösen" afb="II" kompetenzen="K2,K5" quelle="Martina Wagner" lizenz="BY-SA"}}
249 -(% class="abc" %)
250 -1. ((({{{ }}}
251 -
252 -{{formula}}
253 -\begin{align*}
254 -\square e^x-2 &= 0\\
255 -\square e^x &=\square\quad \left|:\square\\
256 -e^x &= \square \\
257 -x &= 0
258 -\end{align*}
259 -{{/formula}}
260 -)))
261 -1. ((({{{ }}}
262 -
263 -{{formula}}
264 -\begin{align*}
265 -e^{2x}-\square e^x &= 0 \\
266 -e^x \cdot (\square-\square) &= 0 \left|\left| \text{ SVNP }
267 -\end{align*}
268 -{{/formula}}
269 -
270 -{{formula}}
271 -e^x \neq 0 ~und~ e^x-\square = 0{{/formula}}
272 -{{formula}} e^x=\square {{/formula}}
273 -{{formula}} x =\square {{/formula}}
274 -)))
275 -1. ((({{{ }}}
276 -
277 -{{formula}}
278 -\begin{align*}
279 -e^{2x}-\square e^x+\square &= 0 \quad \left|\left|\text{ Subst.: } e^x:=\square\\
280 -z^2-\square z + \square &= 0 \quad \left|\left|\text{ Mitternachtsformel/abc-Formel } &
281 -\end{align*}
282 -{{/formula}}
283 -
284 -{{formula}}
285 -\begin{align*}
286 -\Rightarrow z_{1,2}&=\frac{\square\pm\sqrt{\square^2-4\cdot\square\cdot\square}}{2\cdot\square}\\
287 -z_{1,2}&=\frac{\square+\square}{\square}
288 -\end{align*}
289 -{{/formula}}
290 -
291 -{{formula}}
292 -\begin{align*}
293 -&\text{Resubst.: } z:= e^x\\
294 -&e^x=\square \Rightarrow x \approx 0,693147...\\
295 -\end{align*}
296 -{{/formula}}
297 -)))
298 -{{/aufgabe}}
299 -
300 -{{aufgabe id="Gleichungen aufstellen II" afb="III" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
301 -Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll:
302 -{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}
303 -{{/aufgabe}}
304 -
305 -{{seitenreflexion/}}
2^-xund8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,0 @@
1 -65.6 KB
Inhalt
2^-xund8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Größe
... ... @@ -1,1 +1,0 @@
1 -25.3 KB
Inhalt
... ... @@ -1,1 +1,0 @@
1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="320" height="492"><defs><clipPath id="omPGDIxTrhFg"><path fill="none" stroke="none" d=" M 0 0 L 320 0 L 320 492 L 0 492 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#omPGDIxTrhFg)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="320" height="492" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 5.5 0.5 L 5.5 492.5 M 5.5 0.5 L 5.5 492.5 M 55.5 0.5 L 55.5 492.5 M 105.5 0.5 L 105.5 492.5 M 205.5 0.5 L 205.5 492.5 M 255.5 0.5 L 255.5 492.5 M 305.5 0.5 L 305.5 492.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 15.5 0.5 L 15.5 492.5 M 25.5 0.5 L 25.5 492.5 M 35.5 0.5 L 35.5 492.5 M 45.5 0.5 L 45.5 492.5 M 65.5 0.5 L 65.5 492.5 M 75.5 0.5 L 75.5 492.5 M 85.5 0.5 L 85.5 492.5 M 95.5 0.5 L 95.5 492.5 M 115.5 0.5 L 115.5 492.5 M 125.5 0.5 L 125.5 492.5 M 135.5 0.5 L 135.5 492.5 M 145.5 0.5 L 145.5 492.5 M 165.5 0.5 L 165.5 492.5 M 175.5 0.5 L 175.5 492.5 M 185.5 0.5 L 185.5 492.5 M 195.5 0.5 L 195.5 492.5 M 215.5 0.5 L 215.5 492.5 M 225.5 0.5 L 225.5 492.5 M 235.5 0.5 L 235.5 492.5 M 245.5 0.5 L 245.5 492.5 M 265.5 0.5 L 265.5 492.5 M 275.5 0.5 L 275.5 492.5 M 285.5 0.5 L 285.5 492.5 M 295.5 0.5 L 295.5 492.5 M 315.5 0.5 L 315.5 492.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 39.5 L 320.5 39.5 M 0.5 39.5 L 320.5 39.5 M 0.5 89.5 L 320.5 89.5 M 0.5 139.5 L 320.5 139.5 M 0.5 189.5 L 320.5 189.5 M 0.5 239.5 L 320.5 239.5 M 0.5 289.5 L 320.5 289.5 M 0.5 339.5 L 320.5 339.5 M 0.5 389.5 L 320.5 389.5 M 0.5 489.5 L 320.5 489.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 320.5 9.5 M 0.5 9.5 L 320.5 9.5 M 0.5 19.5 L 320.5 19.5 M 0.5 29.5 L 320.5 29.5 M 0.5 49.5 L 320.5 49.5 M 0.5 59.5 L 320.5 59.5 M 0.5 69.5 L 320.5 69.5 M 0.5 79.5 L 320.5 79.5 M 0.5 99.5 L 320.5 99.5 M 0.5 109.5 L 320.5 109.5 M 0.5 119.5 L 320.5 119.5 M 0.5 129.5 L 320.5 129.5 M 0.5 149.5 L 320.5 149.5 M 0.5 159.5 L 320.5 159.5 M 0.5 169.5 L 320.5 169.5 M 0.5 179.5 L 320.5 179.5 M 0.5 199.5 L 320.5 199.5 M 0.5 209.5 L 320.5 209.5 M 0.5 219.5 L 320.5 219.5 M 0.5 229.5 L 320.5 229.5 M 0.5 249.5 L 320.5 249.5 M 0.5 259.5 L 320.5 259.5 M 0.5 269.5 L 320.5 269.5 M 0.5 279.5 L 320.5 279.5 M 0.5 299.5 L 320.5 299.5 M 0.5 309.5 L 320.5 309.5 M 0.5 319.5 L 320.5 319.5 M 0.5 329.5 L 320.5 329.5 M 0.5 349.5 L 320.5 349.5 M 0.5 359.5 L 320.5 359.5 M 0.5 369.5 L 320.5 369.5 M 0.5 379.5 L 320.5 379.5 M 0.5 399.5 L 320.5 399.5 M 0.5 409.5 L 320.5 409.5 M 0.5 419.5 L 320.5 419.5 M 0.5 429.5 L 320.5 429.5 M 0.5 449.5 L 320.5 449.5 M 0.5 459.5 L 320.5 459.5 M 0.5 469.5 L 320.5 469.5 M 0.5 479.5 L 320.5 479.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 2.5 L 155.5 492.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 151.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 159.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="302" y="435" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">x</text><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 439.5 L 318.5 439.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 435.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 443.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="50" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="100" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="253" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="303" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="160" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">y</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="394" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="344" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="294" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="244" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="194" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="144" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="94" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">7</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="44" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(114,59,134)" paint-order="fill stroke markers" d=" M 1 10.192059721474891 L 1 16.10832914557932 L 1 16.108329145579148 L 2 21.943147540224913 L 2 21.943147540224743 L 3 27.697636265803794 L 3 27.697636265803624 L 4 33.3729012446081 L 4 33.372901244607874 L 5 38.97003317337072 L 5 38.97003317337055 L 6 44.490107732880176 L 6 44.49010773288006 L 7 49.9341857947104 L 7 49.93418579471029 L 8 55.303313625102135 L 8 55.30331362510202 L 9 60.59852308603996 L 9 60.59852308603985 L 10 65.82083183355951 L 10 65.8208318335594 L 11 70.97124351332502 L 11 70.97124351332491 L 12 76.05074795351436 L 12 76.05074795351425 L 13 81.06032135504825 L 13 81.06032135504819 L 14 86.0009264792011 L 14 86.00092647920098 L 15 90.87351283262814 L 15 90.87351283262802 L 16 95.67901684984582 L 16 95.67901684984571 L 17 100.41836207320006 L 17 100.41836207319994 L 18 105.09245933035652 L 18 105.0924593303564 L 19 109.7022069093469 L 19 109.70220690934684 L 20 114.24849073120629 L 20 114.24849073120623 L 21 118.73218452023309 L 21 118.73218452023303 L 22 123.1541499719051 L 22 123.15414997190504 L 23 127.51523691848377 L 23 127.51523691848371 L 24 131.81628349233875 L 24 131.81628349233864 L 25 136.0581162870236 L 25 136.0581162870235 L 26 140.24155051613428 L 26 140.24155051613417 L 27 144.36739016998013 L 27 144.36739016998007 L 27.999999999999986 148.43642817009857 L 27.999999999999986 148.43642817009845 L 28.999999999999986 152.44944652164156 L 28.999999999999986 152.44944652164145 L 30 156.40721646366535 L 30 156.40721646366524 L 31 160.31049861734994 L 31 160.31049861734982 L 32 164.160043132179 L 32 164.16004313217888 L 33 167.9565898301064 L 33 167.95658983010634 L 34 171.70086834773872 L 34 171.70086834773866 L 35 175.3935982765596 L 35 175.39359827655954 L 36 179.03548930122417 L 36 179.03548930122412 L 37.000000000000014 182.62724133594924 L 37.000000000000014 182.62724133594918 L 37.999999999999986 186.1695446590256 L 37.999999999999986 186.1695446590255 L 38.999999999999986 189.66308004547906 L 38.999999999999986 189.66308004547895 L 39.999999999999986 193.1085188979043 L 39.999999999999986 193.10851889790422 L 41 196.5065233754982 L 41 196.5065233754981 L 42 199.85774652131613 L 42 199.85774652131605 L 43 203.16283238777686 L 43 203.16283238777677 L 44 206.42241616043924 L 44 206.42241616043916 L 45 209.63712428007472 L 45 209.63712428007463 L 46 212.80757456305957 L 46 212.8075745630595 L 47 215.9343763201095 L 47 215.9343763201094 L 47.999999999999986 219.01813047337933 L 47.999999999999986 219.01813047337924 L 48.999999999999986 222.05942967195134 L 48.999999999999986 222.05942967195125 L 49.999999999999986 225.0588584057325 L 49.999999999999986 225.05885840573242 L 50.999999999999986 228.01699311778458 L 50.999999999999986 228.0169931177845 L 52 230.93440231510738 L 52 230.9344023151073 L 53 233.81164667789687 L 53 233.8116466778968 L 54 236.649279167299 L 54 236.64927916729891 L 55 239.44784513168034 L 55 239.44784513168022 L 56 242.20788241143512 L 56 242.20788241143507 L 57 244.9299214423502 L 57 244.92992144235015 L 58 247.6144853575461 L 58 247.61448535754604 L 58.999999999999986 250.26209008801496 L 58.999999999999986 250.2620900880149 L 60 252.87324446177473 L 60 252.8732444617747 L 61 255.4484503016575 L 61 255.44845030165746 L 61.999999999999986 257.98820252175216 L 61.999999999999986 257.9882025217521 L 63 260.4929892225191 L 63 260.4929892225191 L 64 262.9632917845955 L 64 262.9632917845955 L 65 265.399584961309 L 65 265.39958496130896 L 66 267.80233696991786 L 66 267.80233696991786 L 66.99999999999999 270.17200958159503 L 66.99999999999999 270.17200958159503 L 68 272.5090582101733 L 68 272.50905821017324 L 69 274.8139319996685 L 69 274.8139319996684 L 70 277.0870739105982 L 70 277.0870739105981 L 71 279.3289208051116 L 71 279.3289208051116 L 71.99999999999999 281.5399035309475 L 71.99999999999999 281.5399035309475 L 72.99999999999999 283.7204470042369 L 72.99999999999999 283.7204470042368 L 74 285.8709702911644 L 74 285.8709702911643 L 75 287.99188668850684 L 75 287.9918866885067 L 76 290.08360380306215 L 76 290.08360380306215 L 77 292.1465236299851 L 77 292.14652362998504 L 77.99999999999999 294.1810426300443 L 77.99999999999999 294.18104263004426 L 79 296.1875518058158 L 79 296.18755180581576 L 80 298.1664367768277 L 80 298.16643677682765 L 81 300.11807785367 L 81 300.11807785367 L 82 302.04285011108453 L 82 302.0428501110845 L 82.99999999999999 303.94112346004823 L 82.99999999999999 303.9411234600482 L 83.99999999999999 305.8132627188644 L 83.99999999999999 305.81326271886434 L 85 307.65962768327483 L 85 307.6596276832748 L 86 309.4805731956071 L 86 309.4805731956071 L 87 311.2764492129696 L 87 311.2764492129696 L 88 313.0476008745079 L 88 313.04760087450785 L 88.99999999999999 314.7943685677346 L 88.99999999999999 314.7943685677345 L 90 316.5170879939472 L 90 316.51708799394714 L 91 318.21609023274414 L 91 318.2160902327441 L 92 319.8917018056531 L 92 319.89170180565304 L 93 321.5442447388835 L 93 321.54424473888344 L 94 323.1740366252147 L 94 323.1740366252146 L 95 324.7813906850324 L 95 324.78139068503236 L 96 326.3666158265248 L 96 326.3666158265248 L 97 327.93001670504975 L 97 327.93001670504975 L 98 329.47189378168474 L 98 329.4718937816847 L 99 330.99254338097074 L 99 330.9925433809707 L 100 332.49225774786134 L 100 332.4922577478613 L 101 333.97132510388735 L 101 333.97132510388735 L 102 335.4300297025488 L 102 335.4300297025487 L 103 336.86865188394347 L 103 336.86865188394347 L 103.99999999999999 338.28746812864455 L 103.99999999999999 338.2874681286445 L 105 339.6867511108352 L 105 339.6867511108352 L 106 341.06676975071264 L 106 341.0667697507126 L 107 342.4277892661702 L 107 342.4277892661701 L 108 343.7700712237681 L 108 343.77007122376807 L 109 345.09387358900256 L 109 345.09387358900256 L 110 346.3994507758824 L 110 346.3994507758824 L 111 347.6870536958238 L 111 347.6870536958238 L 112 348.95692980587114 L 112 348.95692980587114 L 113 350.20932315625464 L 113 350.20932315625464 L 114 351.44447443729285 L 114 351.4444744372928 L 115 352.6626210256496 L 115 352.66262102564957 L 116 353.863997029954 L 116 353.863997029954 L 117 355.0488333357926 L 117 355.0488333357926 L 118 356.21735765008174 L 118 356.2173576500817 L 119 357.36979454482935 L 119 357.3697945448293 L 120 358.5063655002942 L 120 358.5063655002941 L 121 359.6272889475509 L 121 359.6272889475508 L 122 360.73278031046885 L 122 360.73278031046885 L 123 361.82305204711355 L 123 361.8230520471135 L 124 362.89831369057725 L 124 362.89831369057725 L 125 363.9587718892485 L 125 363.95877188924845 L 126 365.00463044652616 L 126 365.0046304465261 L 126.99999999999999 366.0360903599876 L 126.99999999999999 366.0360903599876 L 128 367.05334986001725 L 128 367.0533498600172 L 129 368.056604447903 L 129 368.056604447903 L 130 369.04604693340895 L 130 369.0460469334089 L 131 370.0218674718301 L 131 370.0218674718301 L 132 370.9842536005374 L 132 370.98425360053733 L 133 371.93339027501924 L 133 371.9333902750192 L 134 372.8694599044273 L 134 372.86945990442723 L 135 373.7926423866325 L 135 373.79264238663245 L 136 374.70311514279865 L 136 374.70311514279865 L 137 375.60105315147996 L 137 375.6010531514799 L 138 376.48662898224904 L 138 376.486628982249 L 139 377.3600128288624 L 139 377.36001282886235 L 140 378.2213725419687 L 140 378.22137254196866 L 141 379.07087366136716 L 141 379.07087366136716 L 142 379.90867944782167 L 142 379.9086794478216 L 143 380.7349509144368 L 143 380.7349509144368 L 144 381.54984685760246 L 144 381.5498468576024 L 145 382.3535238875113 L 145 382.3535238875113 L 146 383.1461364582575 L 146 383.1461364582575 L 147 383.92783689752 L 147 383.92783689751997 L 148 384.6987754358375 L 148 384.69877543583743 L 149 385.4591002354805 L 149 385.45910023548043 L 150 386.20895741892576 L 150 386.2089574189257 L 151 386.94849109693877 L 151 386.94849109693877 L 152 387.6778433962695 L 152 387.67784339626945 L 153 388.3971544869669 L 153 388.3971544869668 L 154 389.1065626093174 L 154 389.1065626093174 L 155 389.80620410041274 L 155 389.8062041004127 L 156 390.4962134203514 L 156 390.4962134203514 L 157 391.1767231780802 L 157 391.1767231780802 L 158 391.84786415687915 L 158 391.84786415687915 L 159 392.50976533949637 L 159 392.50976533949637 L 160 393.1625539329363 L 160 393.1625539329363 L 161 393.806355392907 L 161 393.806355392907 L 162 394.44129344793066 L 162 394.44129344793066 L 163 395.0674901231224 L 163 395.0674901231224 L 164 395.68506576364155 L 164 395.68506576364155 L 165 396.2941390578199 L 165 396.2941390578199 L 166 396.8948270599721 L 166 396.8948270599721 L 167 397.4872452128914 L 167 397.4872452128914 L 168 398.071507370036 L 168 398.071507370036 L 169 398.64772581740976 L 169 398.64772581740976 L 170 399.2160112951422 L 170 399.2160112951422 L 171 399.77647301877056 L 171 399.77647301877056 L 172 400.32921870022955 L 172 400.32921870022955 L 173 400.8743545685519 L 173 400.8743545685519 L 174 401.41198539028375 L 174 401.41198539028375 L 175 401.94221448961935 L 175 401.94221448961935 L 176 402.4651437682582 L 176 402.4651437682582 L 177 402.98087372498895 L 177 402.9808737249889 L 178 403.48950347500374 L 178 403.48950347500374 L 179 403.9911307689466 L 179 403.9911307689466 L 180 404.4858520116996 L 180 404.4858520116996 L 181 404.97376228091014 L 181 404.97376228091014 L 182 405.4549553452638 L 182 405.4549553452638 L 183 405.92952368250474 L 183 405.92952368250474 L 184 406.39755849720876 L 184 406.39755849720876 L 185 406.8591497383114 L 185 406.8591497383114 L 186 407.3143861163944 L 186 407.3143861163944 L 187 407.76335512073507 L 187 407.76335512073507 L 188 408.2061430361196 L 188 408.2061430361196 L 189 408.6428349594263 L 189 408.6428349594263 L 190 409.0735148159795 L 190 409.0735148159795 L 191 409.4982653756787 L 191 409.49826537567867 L 192 409.9171682689059 L 192 409.9171682689059 L 193 410.33030400221355 L 193 410.33030400221355 L 194 410.7377519737963 L 194 410.7377519737963 L 195 411.1395904887508 L 195 411.13959048875074 L 196 411.5358967741239 L 196 411.5358967741239 L 197 411.9267469937551 L 197 411.9267469937551 L 198 412.31221626291386 L 198 412.31221626291386 L 199 412.69237866273534 L 199 412.69237866273534 L 200 413.067307254458 L 200 413.067307254458 L 201 413.4370740934645 L 201 413.4370740934645 L 202 413.80175024312985 L 202 413.80175024312985 L 203 414.16140578847853 L 203 414.16140578847853 L 204 414.51610984965384 L 204 414.5161098496538 L 205 414.86593059520146 L 205 414.86593059520146 L 206 415.21093525517085 L 206 415.21093525517085 L 207 415.5511901340352 L 207 415.5511901340352 L 208 415.8867606234347 L 208 415.8867606234347 L 209 416.2177112147433 L 209 416.2177112147433 L 209.99999999999997 416.5441055114633 L 209.99999999999997 416.5441055114633 L 211 416.86600624144864 L 211 416.86600624144864 L 212 417.1834752689605 L 212 417.1834752689605 L 213 417.49657360655635 L 213 417.49657360655635 L 214 417.8053614268159 L 214 417.80536142681586 L 215 418.1098980739051 L 215 418.1098980739051 L 216 418.41024207498117 L 216 418.41024207498117 L 217 418.70645115144083 L 217 418.70645115144083 L 218 418.99858223001314 L 218 418.9985822300131 L 219 419.28669145370003 L 219 419.28669145370003 L 220 419.5708341925662 L 220 419.5708341925662 L 221 419.8510650543804 L 221 419.8510650543804 L 222 420.1274378951099 L 222 420.1274378951099 L 223 420.4000058292711 L 223 420.4000058292711 L 224 420.668821240137 L 224 420.668821240137 L 225 420.9339357898048 L 225 420.9339357898048 L 226 421.1954004291242 L 226 421.1954004291242 L 227 421.4532654074896 L 227 421.4532654074896 L 228 421.707580282497 L 228 421.707580282497 L 229 421.95839392946846 L 229 421.95839392946846 L 230 422.2057545508449 L 230 422.2057545508449 L 231 422.4497096854502 L 231 422.4497096854502 L 232 422.69030621762704 L 232 422.69030621762704 L 233 422.9275903862475 L 233 422.9275903862475 L 234 423.1616077935995 L 234 423.1616077935995 L 235 423.3924034141508 L 235 423.3924034141508 L 236 423.62002160319236 L 236 423.62002160319236 L 237 423.84450610536265 L 237 423.84450610536265 L 238 424.0659000630549 L 238 424.0659000630549 L 239 424.2842460247083 L 239 424.2842460247083 L 240 424.4995859529849 L 240 424.4995859529849 L 241 424.7119612328345 L 241 424.7119612328345 L 242 424.9214126794481 L 242 424.9214126794481 L 243 425.1279805461019 L 243 425.1279805461019 L 244 425.3317045318933 L 244 425.3317045318933 L 245 425.5326237893705 L 245 425.5326237893705 L 246 425.7307769320571 L 246 425.7307769320571 L 247 425.92620204187267 L 247 425.92620204187267 L 248 426.11893667645205 L 248 426.11893667645205 L 249 426.3090178763628 L 249 426.3090178763628 L 250 426.49648217222415 L 250 426.49648217222415 L 251 426.6813655917274 L 251 426.6813655917274 L 252 426.86370366656007 L 252 426.86370366656007 L 253 427.0435314392344 L 253 427.0435314392344 L 254 427.22088346982207 L 254 427.22088346982207 L 255 427.3957938425959 L 255 427.3957938425959 L 256 427.5682961725806 L 256 427.5682961725806 L 257 427.73842361201275 L 257 427.73842361201275 L 258 427.9062088567125 L 258 427.9062088567125 L 259 428.0716841523668 L 259 428.0716841523668 L 260 428.2348813007268 L 260 428.2348813007268 L 261 428.39583166571947 L 261 428.39583166571947 L 262 428.5545661794754 L 262 428.5545661794754 L 263 428.7111153482733 L 263 428.7111153482733 L 264 428.8655092584031 L 264 428.8655092584031 L 265 429.01777758194766 L 265 429.01777758194766 L 266 429.16794958248573 L 266 429.16794958248573 L 267 429.31605412071553 L 267 429.31605412071553 L 268 429.4621196600017 L 268 429.4621196600017 L 269 429.60617427184513 L 269 429.60617427184513 L 270 429.74824564127823 L 270 429.74824564127823 L 271 429.8883610721853 L 271 429.8883610721853 L 272 430.0265474925501 L 272 430.0265474925501 L 273 430.1628314596307 L 273 430.1628314596307 L 274 430.2972391650636 L 274 430.2972391650636 L 275 430.42979643989753 L 275 430.42979643989753 L 276 430.56052875955726 L 276 430.56052875955726 L 277 430.6894612487399 L 277 430.6894612487399 L 278 430.81661868624366 L 278 430.81661868624366 L 279 430.9420255097294 L 279 430.9420255097294 L 280 431.0657058204176 L 280 431.0657058204176 L 281 431.18768338772026 L 281 431.18768338772026 L 282 431.30798165380867 L 282 431.30798165380867 L 283 431.4266237381189 L 283 431.4266237381189 L 284 431.5436324417949 L 284 431.5436324417949 L 285 431.6590302520706 L 285 431.6590302520705 L 286 431.7728393465913 L 286 431.7728393465913 L 287 431.8850815976765 L 287 431.8850815976765 L 288 431.99577857652264 L 288 431.99577857652264 L 289 432.1049515573493 L 289 432.1049515573493 L 290 432.21262152148756 L 290 432.21262152148756 L 291 432.3188091614124 L 291 432.3188091614124 L 292 432.4235348847192 L 292 432.4235348847192 L 293 432.5268188180461 L 293 432.5268188180461 L 294 432.6286808109418 L 294 432.6286808109418 L 295 432.7291404396804 L 295 432.7291404396804 L 296 432.8282170110237 L 296 432.8282170110237 L 297 432.9259295659315 L 297 432.9259295659315 L 298 433.0222968832212 L 298 433.02229688322114 L 299 433.1173374831765 L 299 433.1173374831765 L 300 433.2110696311072 L 300 433.2110696311072 L 301 433.30351134085885 L 301 433.30351134085885 L 302 433.39468037827515 L 302 433.39468037827515 L 303 433.4845942646123 L 303 433.4845942646123 L 304 433.5732702799062 L 304 433.5732702799062 L 305 433.66072546629306 L 305 433.66072546629306 L 306 433.7469766312854 L 306 433.7469766312854 L 307 433.8320403510015 L 307 433.8320403510015 L 308 433.9159329733514 L 308 433.9159329733514 L 309 433.9986706211785 L 309 433.9986706211785 L 310 434.08026919535854 L 310 434.08026919535854 L 311 434.1607443778549 L 311 434.1607443778549 L 312 434.24011163473284 L 312 434.24011163473284 L 313 434.3183862191318 L 313 434.3183862191318 L 314 434.3955831741967 L 314 434.3955831741967 L 315 434.471717335969 L 315 434.471717335969 L 316 434.546803336238 L 316 434.546803336238 L 317 434.6208556053529 L 317 434.6208556053529 L 318 434.693888374996 L 318 434.693888374996 L 319 434.7659156809177 L 319 434.7659156809177 L 320 434.83695136563426" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(114,59,134)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="31" y="122" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(114,59,134)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="42" y="129" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f</text><path fill="none" stroke="rgb(176,0,32)" paint-order="fill stroke markers" d=" M -5 39.92565708998899 L 325 39.92565708998899" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="59" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="71" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">g</text></g></g></svg>
2^xund8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -60.0 KB
Inhalt
2^xund8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -50.3 KB
Inhalt
BPE 4.5 A Gleichungen Gemeinsamer Form.pdf
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -562.4 KB
Inhalt
ExpGlei.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.niklaswunder
Größe
... ... @@ -1,1 +1,0 @@
1 -256.5 KB
Inhalt
Logarithmus.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -7.5 KB
Inhalt
Logarithmus_neu.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -7.5 KB
Inhalt
SchaubilderExp.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.niklaswunder
Größe
... ... @@ -1,1 +1,0 @@
1 -29.9 KB
Inhalt
x^-3und8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.elkehallmanngmxde
Größe
... ... @@ -1,1 +1,0 @@
1 -70.0 KB
Inhalt
x^-3und8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.holgerengels
Größe
... ... @@ -1,1 +1,0 @@
1 -22.0 KB
Inhalt
... ... @@ -1,1 +1,0 @@
1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="320" height="492"><defs><clipPath id="RzybEvQSnaLz"><path fill="none" stroke="none" d=" M 0 0 L 320 0 L 320 492 L 0 492 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#RzybEvQSnaLz)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="320" height="492" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 5.5 0.5 L 5.5 492.5 M 5.5 0.5 L 5.5 492.5 M 55.5 0.5 L 55.5 492.5 M 105.5 0.5 L 105.5 492.5 M 205.5 0.5 L 205.5 492.5 M 255.5 0.5 L 255.5 492.5 M 305.5 0.5 L 305.5 492.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 15.5 0.5 L 15.5 492.5 M 25.5 0.5 L 25.5 492.5 M 35.5 0.5 L 35.5 492.5 M 45.5 0.5 L 45.5 492.5 M 65.5 0.5 L 65.5 492.5 M 75.5 0.5 L 75.5 492.5 M 85.5 0.5 L 85.5 492.5 M 95.5 0.5 L 95.5 492.5 M 115.5 0.5 L 115.5 492.5 M 125.5 0.5 L 125.5 492.5 M 135.5 0.5 L 135.5 492.5 M 145.5 0.5 L 145.5 492.5 M 165.5 0.5 L 165.5 492.5 M 175.5 0.5 L 175.5 492.5 M 185.5 0.5 L 185.5 492.5 M 195.5 0.5 L 195.5 492.5 M 215.5 0.5 L 215.5 492.5 M 225.5 0.5 L 225.5 492.5 M 235.5 0.5 L 235.5 492.5 M 245.5 0.5 L 245.5 492.5 M 265.5 0.5 L 265.5 492.5 M 275.5 0.5 L 275.5 492.5 M 285.5 0.5 L 285.5 492.5 M 295.5 0.5 L 295.5 492.5 M 315.5 0.5 L 315.5 492.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 39.5 L 320.5 39.5 M 0.5 39.5 L 320.5 39.5 M 0.5 89.5 L 320.5 89.5 M 0.5 139.5 L 320.5 139.5 M 0.5 189.5 L 320.5 189.5 M 0.5 239.5 L 320.5 239.5 M 0.5 289.5 L 320.5 289.5 M 0.5 339.5 L 320.5 339.5 M 0.5 389.5 L 320.5 389.5 M 0.5 489.5 L 320.5 489.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 320.5 9.5 M 0.5 9.5 L 320.5 9.5 M 0.5 19.5 L 320.5 19.5 M 0.5 29.5 L 320.5 29.5 M 0.5 49.5 L 320.5 49.5 M 0.5 59.5 L 320.5 59.5 M 0.5 69.5 L 320.5 69.5 M 0.5 79.5 L 320.5 79.5 M 0.5 99.5 L 320.5 99.5 M 0.5 109.5 L 320.5 109.5 M 0.5 119.5 L 320.5 119.5 M 0.5 129.5 L 320.5 129.5 M 0.5 149.5 L 320.5 149.5 M 0.5 159.5 L 320.5 159.5 M 0.5 169.5 L 320.5 169.5 M 0.5 179.5 L 320.5 179.5 M 0.5 199.5 L 320.5 199.5 M 0.5 209.5 L 320.5 209.5 M 0.5 219.5 L 320.5 219.5 M 0.5 229.5 L 320.5 229.5 M 0.5 249.5 L 320.5 249.5 M 0.5 259.5 L 320.5 259.5 M 0.5 269.5 L 320.5 269.5 M 0.5 279.5 L 320.5 279.5 M 0.5 299.5 L 320.5 299.5 M 0.5 309.5 L 320.5 309.5 M 0.5 319.5 L 320.5 319.5 M 0.5 329.5 L 320.5 329.5 M 0.5 349.5 L 320.5 349.5 M 0.5 359.5 L 320.5 359.5 M 0.5 369.5 L 320.5 369.5 M 0.5 379.5 L 320.5 379.5 M 0.5 399.5 L 320.5 399.5 M 0.5 409.5 L 320.5 409.5 M 0.5 419.5 L 320.5 419.5 M 0.5 429.5 L 320.5 429.5 M 0.5 449.5 L 320.5 449.5 M 0.5 459.5 L 320.5 459.5 M 0.5 469.5 L 320.5 469.5 M 0.5 479.5 L 320.5 479.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 2.5 L 155.5 492.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 151.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 155.5 1.5 L 159.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="302" y="435" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">x</text><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 439.5 L 318.5 439.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 435.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 319.5 439.5 L 315.5 443.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="50" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="100" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="253" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="303" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="160" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">y</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="394" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="344" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="294" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="244" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="194" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="144" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="94" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">7</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="44" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="141" y="455" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(224,116,21)" paint-order="fill stroke markers" d=" M 1 441.5984372289223 L 1 441.6311990587012 L 1 441.6311990587012 L 2 441.6648220360863 L 2 441.6648220360863 L 3 441.6993346422053 L 3 441.6993346422053 L 4 441.7347664960673 L 4 441.7347664960673 L 5 441.7711484079558 L 5 441.7711484079558 L 6 441.8085124357038 L 6 441.8085124357038 L 7 441.8468919440279 L 7 441.8468919440279 L 8 441.8863216671096 L 8 441.8863216671096 L 9 441.92683777462474 L 9 441.92683777462474 L 10 441.96847794143713 L 10 441.96847794143713 L 11 442.01128142118534 L 11 442.01128142118534 L 12 442.0552891240108 L 12 442.0552891240108 L 13 442.10054369868976 L 13 442.10054369868976 L 14 442.1470896194525 L 14 442.1470896194525 L 15 442.1949732777928 L 15 442.1949732777928 L 16 442.2442430795928 L 16 442.2442430795928 L 17 442.29494954791153 L 17 442.29494954791153 L 18 442.3471454318119 L 18 442.3471454318119 L 19 442.4008858216281 L 19 442.4008858216281 L 20 442.45622827110486 L 20 442.45622827110486 L 21 442.5132329268738 L 21 442.5132329268738 L 22 442.5719626657655 L 22 442.5719626657655 L 23 442.6324832404958 L 23 442.6324832404958 L 24 442.6948634343043 L 24 442.6948634343043 L 25 442.7591752251696 L 25 442.7591752251696 L 26 442.82549396027326 L 26 442.82549396027326 L 27 442.89389854143747 L 27 442.89389854143747 L 27.999999999999986 442.9644716223197 L 27.999999999999986 442.9644716223197 L 28.999999999999986 443.0372998182093 L 28.999999999999986 443.0372998182093 L 30 443.11247392933893 L 30 443.11247392933893 L 31 443.1900891786993 L 31 443.1900891786993 L 32 443.2702454654239 L 32 443.2702454654239 L 33 443.35304763490217 L 33 443.35304763490217 L 34 443.4386057668715 L 34 443.4386057668715 L 35 443.52703548284734 L 35 443.52703548284734 L 36 443.6184582743638 L 36 443.6184582743638 L 37.000000000000014 443.71300185362173 L 37.000000000000014 443.71300185362173 L 37.999999999999986 443.81080052828236 L 37.999999999999986 443.81080052828236 L 38.999999999999986 443.91199560229035 L 38.999999999999986 443.91199560229035 L 39.999999999999986 444.0167358047804 L 39.999999999999986 444.0167358047804 L 41 444.12517774929853 L 41 444.12517774929853 L 42 444.23748642577095 L 42 444.23748642577095 L 43 444.3538357278717 L 43 444.3538357278717 L 44 444.47440901867867 L 44 444.47440901867867 L 45 444.59939973777637 L 45 444.59939973777637 L 46 444.7290120532512 L 46 444.7290120532512 L 47 444.86346156235044 L 47 444.86346156235044 L 47.999999999999986 445.0029760449277 L 47.999999999999986 445.0029760449277 L 48.999999999999986 445.14779627419335 L 48.999999999999986 445.14779627419335 L 49.999999999999986 445.29817688971826 L 49.999999999999986 445.29817688971826 L 50.999999999999986 445.45438733812153 L 50.999999999999986 445.45438733812153 L 52 445.61671288740354 L 52 445.61671288740354 L 53 445.7854557214735 L 53 445.7854557214735 L 54 445.9609361220771 L 54 445.9609361220771 L 55 446.1434937460527 L 55 446.1434937460527 L 56 446.3334890066557 L 56 446.3334890066557 L 57 446.53130456858736 L 57 446.53130456858736 L 58 446.73734696736636 L 58 446.73734696736636 L 58.999999999999986 446.952048364801 L 58.999999999999986 446.952048364801 L 60 447.17586845356556 L 60 447.17586845356556 L 61 447.4092965252816 L 61 447.4092965252816 L 61.999999999999986 447.6528537180662 L 61.999999999999986 447.6528537180662 L 63 447.9070954612595 L 63 447.9070954612595 L 64 448.17261413700834 L 64 448.17261413700834 L 65 448.45004198058894 L 65 448.45004198058894 L 66 448.74005424383085 L 66 448.74005424383085 L 66.99999999999999 449.0433726488026 L 66.99999999999999 449.0433726488026 L 68 449.36076916206554 L 68 449.36076916206554 L 69 449.6930701233647 L 69 449.6930701233647 L 70 450.0411607666442 L 70 450.0411607666442 L 71 450.4059901758316 L 71 450.4059901758316 L 71.99999999999999 450.7885767229984 L 71.99999999999999 450.7885767229984 L 72.99999999999999 451.1900140423675 L 72.99999999999999 451.1900140423675 L 74 451.61147760030644 L 74 451.61147760030644 L 75 452.0542319290382 L 75 452.0542319290382 L 76 452.51963860046544 L 76 452.51963860046544 L 77 453.00916502639683 L 77 453.00916502639683 L 77.99999999999999 453.5243941827941 L 77.99999999999999 453.5243941827941 L 79 454.06703536863506 L 79 454.06703536863506 L 80 454.63893612489795 L 80 454.63893612489795 L 81 455.24209545631686 L 81 455.24209545631686 L 82 455.8786785183174 L 82 455.8786785183174 L 82.99999999999999 456.5510329543527 L 82.99999999999999 456.5510329543527 L 83.99999999999999 457.2617070952477 L 83.99999999999999 457.2617070952477 L 85 458.0134702627361 L 85 458.0134702627361 L 86 458.80933545489256 L 86 458.80933545489256 L 87 459.652584732483 L 87 459.652584732483 L 88 460.5467976734527 L 88 460.5467976734527 L 88.99999999999999 461.49588331909354 L 88.99999999999999 461.49588331909354 L 90 462.5041161014039 L 90 462.5041161014039 L 91 463.57617631861444 L 91 463.57617631861444 L 92 464.7171958170026 L 92 464.7171958170026 L 93 465.93280964465885 L 93 465.93280964465885 L 94 467.22921457005083 L 94 467.22921457005083 L 95 468.613235509051 L 95 468.613235509051 L 96 470.0924010834111 L 96 470.09240108341106 L 97 471.6750297474711 L 97 471.6750297474711 L 98 473.3703281755346 L 98 473.37032817553455 L 99 475.1885039089298 L 99 475.1885039089298 L 100 477.1408946305759 L 100 477.1408946305759 L 101 479.24011687992066 L 101 479.24011687992066 L 102 481.50023755993914 L 102 481.50023755993914 L 103 483.9369722424425 L 103 483.93697224244244 L 103.99999999999999 486.5679150759227 L 103.99999999999999 486.5679150759227 L 105 489.4128060765053 L 105 489.4128060765053 L 106 492.4938427817044 L 106 492.4938427817044 L 107 495.83604472519585 L 107 495.83604472519585 L 108 499.4676810212861 L 108 499.46768102128607 L 109 503.42077362357173 L 109 503.42077362357173 L 109.1343626510533 504 M 155.16646421146734 -12 L 179.1875893002326 -12 L 180 31.54838744950149 L 180 31.548387449501377 L 181 77.17001442756452 L 181 77.17001442756441 L 182 116.2415509220092 L 182 116.24155092200908 L 183 149.89756934943307 L 183 149.89756934943296 L 184 179.04475110972407 L 184 179.04475110972396 L 185 204.41355115740438 L 185 204.41355115740436 L 186 226.5968986240148 L 186 226.59689862401476 L 187 246.07948126043223 L 187 246.07948126043215 L 188 263.2601146779506 L 188 263.26011467795047 L 189 278.468980542806 L 189 278.46898054280587 L 190 291.98102072924087 L 190 291.98102072924087 L 191 304.02642551989743 L 191 304.02642551989743 L 192 314.7989063209701 L 192 314.7989063209701 L 193 324.46226578080405 L 193 324.462265780804 L 194 333.1556495950451 L 194 333.1556495950451 L 195 340.9977702770228 L 195 340.99777027702277 L 196 348.09032385648743 L 196 348.0903238564874 L 197 354.5207689350642 L 197 354.52076893506415 L 198 360.3645989108604 L 198 360.36459891086037 L 199 365.687209033651 L 199 365.687209033651 L 200 370.54543779053273 L 200 370.5454377905327 L 201 374.98884516081705 L 201 374.98884516081705 L 202 379.0607772148601 L 202 379.0607772148601 L 203 382.79925640775224 L 203 382.79925640775224 L 204 386.2377290279134 L 204 386.2377290279134 L 205 389.40569507599446 L 205 389.4056950759944 L 206 392.3292409763769 L 206 392.3292409763769 L 207 395.03149166433957 L 207 395.0314916643395 L 208 397.53299552077874 L 208 397.53299552077874 L 209 399.8520531708982 L 209 399.8520531708982 L 209.99999999999997 402.004999191277 L 209.99999999999997 402.004999191277 L 211 404.0064441791733 L 211 404.0064441791733 L 212 405.8694833497213 L 212 405.8694833497213 L 213 407.6058767792038 L 213 407.6058767792038 L 214 409.2262055575755 L 214 409.2262055575755 L 215 410.74000741293224 L 215 410.74000741293224 L 216 412.15589479469566 L 216 412.15589479469566 L 217 413.48165792713183 L 217 413.4816579271318 L 218 414.7243549515175 L 218 414.7243549515175 L 219 415.8903909486619 L 219 415.8903909486619 L 220 416.98558736143553 L 220 416.98558736143553 L 221 418.01524310966187 L 221 418.0152431096618 L 222 418.98418849927396 L 222 418.98418849927396 L 223 419.89683286761044 L 223 419.89683286761044 L 224 420.7572067718936 L 224 420.7572067718936 L 225 421.56899941403515 L 225 421.56899941403515 L 226 422.3355918984485 L 226 422.3355918984485 L 227 423.06008683764924 L 227 423.06008683764924 L 228 423.745334750721 L 228 423.745334750721 L 229 424.3939576402675 L 229 424.3939576402675 L 230 425.0083700826312 L 230 425.0083700826312 L 231 425.59079812260035 L 231 425.59079812260035 L 232 426.1432962264187 L 232 426.1432962264187 L 233 426.6677625147233 L 233 426.6677625147233 L 234 427.16595246928244 L 234 427.16595246928244 L 235 427.639491283427 L 235 427.639491283427 L 236 428.0898850053108 L 236 428.0898850053108 L 237 428.51853060513776 L 237 428.5185306051377 L 238 428.9267250818516 L 238 428.9267250818516 L 239 429.3156737111749 L 239 429.3156737111749 L 240 429.686497525013 L 240 429.686497525013 L 241 430.0402401018784 L 241 430.0402401018784 L 242 430.37787373891865 L 242 430.37787373891865 L 243 430.700305068192 L 243 430.700305068192 L 244 431.00838017285866 L 244 431.00838017285866 L 245 431.30288925283037 L 245 431.30288925283037 L 246 431.5845708840267 L 246 431.5845708840267 L 247 431.85411591063087 L 247 431.85411591063087 L 248 432.11217100554126 L 248 432.11217100554126 L 249 432.35934193050366 L 249 432.35934193050366 L 250 432.5961965241238 L 250 432.5961965241238 L 251 432.8232674430493 L 251 432.8232674430493 L 252 433.04105467902474 L 252 433.04105467902474 L 253 433.2500278722263 L 253 433.2500278722263 L 254 433.45062843923995 L 254 433.45062843923995 L 255 433.6432715322246 L 255 433.6432715322246 L 256 433.8283478441797 L 256 433.8283478441797 L 257 434.0062252737829 L 257 434.0062252737829 L 258 434.1772504619704 L 258 434.1772504619704 L 259 434.3417502112684 L 259 434.3417502112684 L 260 434.50003279784585 L 260 434.50003279784585 L 261 434.6523891853258 L 261 434.6523891853258 L 262 434.7990941485523 L 262 434.7990941485523 L 263 434.9404073147606 L 263 434.9404073147606 L 264 435.0765741289159 L 264 435.0765741289159 L 265 435.2078267493799 L 265 435.2078267493799 L 266 435.3343848795094 L 266 435.3343848795094 L 267 435.4564565402997 L 267 435.4564565402997 L 268 435.5742387887304 L 268 435.5742387887304 L 269 435.6879183860713 L 269 435.6879183860713 L 270 435.79767242003453 L 270 435.79767242003453 L 271 435.903668884329 L 271 435.903668884329 L 272 436.00606721886953 L 272 436.00606721886953 L 273 436.10501881362114 L 273 436.10501881362114 L 274 436.20066747880907 L 274 436.20066747880907 L 275 436.2931498839995 L 275 436.2931498839995 L 276 436.3825959683502 L 276 436.3825959683502 L 277 436.46912932414403 L 277 436.46912932414403 L 278 436.55286755554613 L 278 436.55286755554613 L 279 436.63392261437133 L 279 436.63392261437133 L 280 436.7124011145059 L 280 436.7124011145059 L 281 436.78840462649833 L 281 436.78840462649833 L 282 436.86202995371514 L 282 436.86202995371514 L 283 436.93336939134923 L 283 436.93336939134923 L 284 437.00251096947 L 284 437.00251096947 L 285 437.0695386812121 L 285 437.0695386812121 L 286 437.13453269711806 L 286 437.13453269711806 L 287 437.1975695665724 L 287 437.1975695665724 L 288 437.25872240719536 L 288 437.25872240719536 L 289 437.3180610830001 L 289 437.3180610830001 L 290 437.37565237205746 L 290 437.3756523720574 L 291 437.43156012435867 L 291 437.43156012435867 L 292 437.485845410516 L 292 437.485845410516 L 293 437.53856666189495 L 293 437.53856666189495 L 294 437.5897798027298 L 294 437.5897798027298 L 295 437.6395383747349 L 295 437.6395383747349 L 296 437.68789365468706 L 296 437.68789365468706 L 297 437.73489476542284 L 297 437.73489476542284 L 298 437.78058878066264 L 298 437.78058878066264 L 299 437.8250208240443 L 299 437.8250208240443 L 300 437.86823416272495 L 300 437.86823416272495 L 301 437.91027029588247 L 301 437.91027029588247 L 302 437.9511690384286 L 302 437.9511690384286 L 303 437.9909686002219 L 303 437.9909686002219 L 304 438.0297056610519 L 304 438.0297056610519 L 305 438.0674154416462 L 305 438.0674154416462 L 306 438.104131770936 L 306 438.104131770936 L 307 438.13988714980144 L 307 438.13988714980144 L 308 438.17471281150137 L 308 438.17471281150137 L 309 438.2086387789811 L 309 438.2086387789811 L 310 438.24169391923857 L 310 438.24169391923857 L 311 438.2739059949168 L 311 438.2739059949168 L 312 438.3053017132818 L 312 438.3053017132818 L 313 438.3359067727336 L 313 438.3359067727336 L 314 438.36574590698933 L 314 438.36574590698933 L 315 438.3948429270685 L 315 438.3948429270685 L 316 438.4232207612031 L 316 438.4232207612031 L 317 438.4509014927868 L 317 438.4509014927868 L 318 438.47790639647104 L 318 438.47790639647104 L 319 438.50425597250984 L 319 438.50425597250984 L 320 438.52996997944683" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(224,116,21)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="24" y="465" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(224,116,21)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="35" y="472" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f</text><path fill="none" stroke="rgb(176,0,32)" paint-order="fill stroke markers" d=" M -5 39.92565708998899 L 325 39.92565708998899" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="59" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(176,0,32)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="71" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">g</text></g></g></svg>
x^3und8.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -61.4 KB
Inhalt
x^3und8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.dirktebbe
Größe
... ... @@ -1,1 +1,0 @@
1 -52.9 KB
Inhalt