\(e^{2x}-4e^x+3=0\)
\(u:=e^x\)
⬊\(x^{2e}-4x^e+3=0\)
\(u:=x^e\)
🠗\(x^{-2}-4x^{-1}+3=0\)
\(u:=x^{-1}\)
⬋\(u^2-4u+3=0\)
\(u_{1,2}=\frac{4\pm \sqrt{16-12}}{2}\)
\(u_1=\_\_\_\quad;\quad u_2=\_\_\_\)⬋
\(\_\_\_:=u\)
🠗
\(\_\_\_:=u\)
⬊
\(\_\_\_:=u\)
\(x^{-2}-3x^{-1}=0\)
\(u:=\_\_\_\)
⬊\(x^{2e}-3x^e=0\)
\(u:=\_\_\_\)
🠗\(e^{2x}-3e^x=0\)
\(u:=\_\_\_\)
⬋\(u^2-3u=0\)
\(u_1=\_\_\_\quad;\quad u_2=\_\_\_\)⬋
\(\_\_\_:=u\)
🠗
\(\_\_\_:=u\)
⬊
\(\_\_\_:=u\)
\(x^{-2}-2x^{-1}+3=0\)
\(u:=\_\_\_\)
⬊\(x^{2e}-2x^e+3=0\)
\(u:=\_\_\_\)
🠗\(e^{2x}-2e^x+3=0\)
\(u:=\_\_\_\)
⬋\(u^2-2u+3=0\)
\(u_1=\_\_\_\quad;\quad u_2=\_\_\_\)⬋
\(\_\_\_:=u\)
🠗
\(\_\_\_:=u\)
⬊
\(\_\_\_:=u\)