Zuletzt geändert von Holger Engels am 2025/03/04 09:45

Von Version 61.1
bearbeitet von Thomas Köhler
am 2025/02/25 17:18
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 64.1
bearbeitet von Thomas Köhler
am 2025/02/25 17:20
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -74,41 +74,12 @@
74 74  
75 75  {{/aufgabe}}
76 76  
77 -{{aufgabe id="Wachstum Schokolinsen" afb="I" kompetenzen="K1, K3, K4" quelle="Martina, Stephanie, Thomas" cc="BY-SA" niveau=""}}
78 -
79 -Eine 300g Packung Schokolinsen soll nach folgendem Schema an eine Klasse verteilt werden:
80 -
81 - Schüler 1: 1 Linse
82 - Schüler 2: 2 Linsen
83 - Schüler 3: ??
84 - Schüler 4: 8 Linsen
85 -
86 -
87 -
88 -1. Ermittle, wie viele Linsen S3 und S6 bekommen.
89 -1. In der Packung befinden sich 660 Linsen.
90 -Bestimme, wie groß die Klasse sein darf, so dass jeder Schüler Linsen bekommt.
91 -1. Eine Klasse hat 30 Schüler. Gib ein zweites Schmea an, so dass jeder Schüler gleich viele Linsen erhält.
92 -1. In dem Behälter befinden sich die Schokolinsen für Schüler 11.
93 -Gib einen Schätzwert für die Anzahl an Linsen für Schüler 11 an.
94 -Ermittle einen Term, wie man die Zahl der Linsen für Schüler 11 berechnen kann.
95 -1. Bestimme einen Funktionsterm, mit dem du die Anzahl der Linsen für den Schüler an x. - ter Stelle berechnen kannst.
96 -
97 -
98 -
99 -
100 -
101 -(% style="width: auto" %)
102 -
103 -
104 -{{/aufgabe}}
105 -
106 106  {{aufgabe id="Wachstum mit Wertetabelle" afb="I" kompetenzen="K1, K3, K4" quelle="Martina, Stephanie, Thomas" cc="BY-SA" niveau=""}}
107 107  
108 108  Gegeben sit der folgende Funktionsterm {{formula}}f(x)=4\cdot \frac{1}{4}^x ;x{{/formula}} in Stunden.
109 109  
110 110  1. Beschreibe einen Anwendungskontext, welcher mit dem Funktionsterm modelliert werden kann.
111 -1. Beurteile, ob der Funktionsterm {{formula}}g(x)=4\cdot \frac{1}{16}^{frac{1}{16}\cdot x} ;x{{/formula}} ebenfalls diesen Prozess beschreibt.
82 +1. Beurteile, ob der Funktionsterm {{formula}}g(x)=4\cdot \frac{1}{16}^{\frac{1}{2}\cdot x} ;x{{/formula}} ebenfalls diesen Prozess beschreibt.
112 112  1. Gib an, wie der Funktionsterm verändert werden muss, wenn {{formula}} x{{/formula}} in Minuten gemessen wird.
113 113  
114 114