Zuletzt geändert von Holger Engels am 2025/03/04 09:45

Von Version 97.1
bearbeitet von Thomas Köhler
am 2025/02/26 14:10
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 107.1
bearbeitet von wies
am 2025/02/26 15:15
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.thomask2111
1 +XWiki.wies
Inhalt
... ... @@ -53,12 +53,16 @@
53 53  
54 54  {{aufgabe id="Würfelzerfall" afb="I" kompetenzen="K1, K3, K4" quelle="Martina, Stephanie, Thomas" cc="BY-SA" niveau=""}}
55 55  
56 -In einem Würfelbecher befinden sich 30 Würfel. Es werden alle Würfel gleichzeitig geworfen. Wenn ein Würfel das Sternsymbol anzeigt, wird er aussortiert. Untenstehend wird das Ergebnis der
56 +In einem Würfelbecher befinden sich 30 Würfel. Es werden alle Würfel gleichzeitig geworfen. Wenn ein Würfel das Sternsymbol anzeigt, wird er aussortiert. Untenstehend ist das Ergebnis einer Zerfallsreihe zu sehen.
57 57  
58 58  [[image:wuerfel_tabelle_1.png||style="align: left" width="60%"]]
59 59  [[image:wuerfel_tabelle_2.png||style="align: left" width="60%"]]
60 60  [[image:wuerfel_tabelle_3.png||style="align: left" width="60%"]]
61 61  
62 +1. Trage die Anzahl der verbleibenden Würfel nach jedem Wurf in die [[Tabelle>>attach:Würfelwurf.pdf]] ein.
63 +1. Die Wahrscheinleichkeit, dass das Sternsymbol angezeigt wird beträgt {{formula}}P(Stern)=\frac{1}{6}{{/formula}}.
64 +Gib eine Funktionsgleichung an, welche die Anzahl der verbleibenden Würfel nach jedem Wurf angibt.
65 +Beurteile, inwieweit deine Lösung mit den gemessenen Werten übereinstimmt.
62 62  
63 63  
64 64  
... ... @@ -139,6 +139,19 @@
139 139   )))
140 140  {{/aufgabe}}
141 141  
146 +~{~{/aufgabe}}
147 +
148 +{{aufgabe id="Anwendung und Darstellungsformen" afb="I" kompetenzen="K1, K3, K4" quelle="Martina, Stephanie, Thomas" cc="BY-SA" niveau=""}}
149 +
150 +Gegeben ist die folgende Funktionsgleichung {{formula}}f(x)=4\cdot (\frac{1}{4})^x ;x{{/formula}} in Stunden.
151 +
152 +1. Beschreibe einen Anwendungskontext, welcher mit der Funktionsgleichung modelliert werden kann.
153 +1. Beurteile, ob die Funktionsgleichung {{formula}}g(x)=4\cdot (\frac{1}{16})^{\frac{1}{2}\cdot x} ;x{{/formula}} ebenfalls diesen Prozess beschreibt.
154 +1. Gib an, wie die Funktionsgleichung verändert werden muss, wenn {{formula}} x{{/formula}} in Minuten gemessen wird.
155 +
156 +
157 +{{/aufgabe}}
158 +
142 142  == Exponentielles Wachstum ==
143 143  
144 144  {{lernende}}
wuerfelwurf.pdf
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.thomask2111
Größe
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Inhalt
Würfelwurf.pdf
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.thomask2111
Größe
... ... @@ -1,0 +1,1 @@
1 +9.8 MB
Inhalt