Version 39.1 von Martina Wagner am 2025/02/25 14:58

Zeige letzte Bearbeiter
1 {{seiteninhalt/}}
2
3 [[Kompetenzen.K1.WebHome]] Ich kann den Unterschied zwischen linearem und exponentiellem Wachstum erläutern
4 [[Kompetenzen.K3.WebHome]] [[Kompetenzen.K4]] Ich kann Wachstumsprozesse mithilfe von Exponentialfunktionen modellieren
5 [[Kompetenzen.K3.WebHome]] [[Kompetenzen.K4]] Ich kann Zerfallsprozesse mithilfe von Exponentialfunktionen modellieren
6 [[Kompetenzen.K6.WebHome]] [[Kompetenzen.K4]] Ich kann die Parameter eines Funktionsterms in der Form {{formula}}f(x) = ae^{kx} + d{{/formula}} oder {{formula}}f(x) = ab^x + d{{/formula}} im Sachzusammenhang deuten
7
8 {{lehrende}}
9 Unterschied Lineares und Exponentielles Wachstum
10
11 Vermittlung des "Gefühls" für lineares und exponentielles Wachstum: Reihen von Fotos mit linearem bzw. exponentiellem Wachstums- bzw Zerfallsvorgänge
12
13 Modellierung von Wachstums-und Zerfallsprozessen (experimentell Schokolinsen, Gummibärchen, Würfel)
14 Klärung der Begriffe Anfangsbestand, Wachstumsfaktor, Halbwertszeit, Verdopplungszeit, ...
15
16 Anwendungen aus der Realität (radioaktives Jod, Zerfall von Medikamenten, Geld,....)
17 {{/lehrende}}
18
19 == Lineares vs exponentielles Wachstum ==
20
21 {{lernende}}
22 [[GeoGebra-Buch>>https://www.geogebra.org/m/khnsgz5a#material/A33wcCSZ]]
23 [[KMap Aufgaben>>https://kmap.eu/app/test/Mathematik/Exponentialfunktionen/Wachstum%20und%20Zerfall]]
24 {{/lernende}}
25
26 {{aufgabe id="Linear oder exponentiell" afb="I" kompetenzen="K4" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Exponentialfunktionen/Wachstum%20und%20Zerfall]]" cc="BY-SA" niveau="g"}}
27
28 Ordne zu!
29
30 (% style="width: auto" %)
31 |(((
32 Eine Kerze brennt ab
33
34 Die Lichtintensität im Wasser nimmt mit der Tiefe ab
35
36 Auf ein Sparkonto werden jeden Monat 100€ eingezahlt
37
38 Aufladen eines Akkus
39
40 Kaffee kühlt ab
41
42 Verbreitung eines Gerüchts
43 )))|(((
44 Beschränkter Zerfall
45
46 Exponentieller Zerfall
47
48 Exponentielles Wachstum
49
50 Lineares Wachstum
51
52 Beschränktes Wachstum
53
54 Linearer Zerfall
55 )))
56 {{/aufgabe}}
57
58 == Exponentielles Wachstum ==
59
60 {{lernende}}
61 [[GeoGebra-Buch>>https://www.geogebra.org/m/khnsgz5a#material/DvsHTqFF]]
62 {{/lernende}}
63
64 {{aufgabe id="CO2-Konzentration" afb="II" kompetenzen="K1,K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_B_Analysis_WTR_1.pdf]]" niveau="e" tags="iqb" cc="by"}}
65
66 In einer Messstation wird seit 1958 kontinuierlich die CO,,2,,-Konzentration in der Luft gemessen, die in ppm (parts per million) angegeben wird. Die Tabelle gibt für die Jahre 1960, 1985 und 2010 jeweils den jährlichen Durchschnittswert der Messwerte an.
67
68 (% style="width: min-content; white-space: nowrap" class="border" %)
69 |=Jahr|1960|1985|2010
70 |=CO,,2,,-Konzentration| 317 ppm | 346 ppm | 390 ppm
71
72
73 1. Die jährlichen Durchschnittswerte haben sich im Zeitraum von 1960 bis 1985 in guter Näherung exponentiell entwickelt. Ermittle die zugehörige jährliche Wachstumsrate in Prozent. //(zur Kontrolle: etwa 0,35%)//
74 1. Berechne unter der Annahme, dass sich das exponentielle Wachstum nach 1985 in gleicher Weise fortgesetzt hat, den jährlichen Durchschnittswert für das Jahr 2010. Vergleiche diesen Wert mit dem zugehörigen Wert aus der Tabelle und formuliere das Ergebnis deines Vergleichs im Sachzusammenhang.
75 {{/aufgabe}}
76
77 == Exponentieller Zerfall ==
78
79 {{aufgabe id="Radioaktiver Zerfall" afb="II" kompetenzen="K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_B_Analysis_WTR_2.pdf]]" niveau="e" tags="iqb" cc="by"}}
80 Am 26. April 1986 ereignete sich in der Ukraine ein Reaktorunfall, bei dem radioaktives Plutonium-241 freigesetzt wurde. Plutonium-241 zerfällt exponentiell, d. h. in jedem Jahr nimmt die Masse des vorhandenen Plutonium-241 um einen konstanten prozentualen Anteil ab.
81
82 Im Folgenden wird der Zerfall einer bestimmten Menge Plutonium-241 betrachtet. Dieser Zerfall wird durch die Funktion {{formula}} p {{/formula}} mit {{formula}} p(x) = 200 \cdot e^{-0,0480x}{{/formula}} und {{formula}} x \in \mathbb{R}_0^{+}{{/formula}} beschrieben. Dabei ist {{formula}} x {{/formula}} die Zeit in Jahren, die seit dem Reaktorunfall vergangen ist, und {{formula}} p(x) {{/formula}} die Masse des verbliebenen Plutonium-241 in Milligramm.
83
84 1. Gib die Bedeutung des Faktors 200 im Sachzusammenhang an und berechne den prozentualen Anteil, um den die Masse des Plutonium-241 in jedem Jahr abnimmt.
85 1. Bestimme das Jahr, in dessen Verlauf erstmals weniger als ein Milligramm des Plutonium-241 vorhanden sein wird.
86 {{/aufgabe}}
87
88 {{seitenreflexion/}}