Änderungen von Dokument BPE 6.3 Graphisches Ableiten
Zuletzt geändert von Holger Engels am 2025/08/02 07:35
Von Version 169.3
bearbeitet von Holger Engels
am 2025/06/27 10:51
am 2025/06/27 10:51
Änderungskommentar:
Kommentar hinzugefügt
Auf Version 173.3
bearbeitet von Holger Engels
am 2025/07/29 10:07
am 2025/07/29 10:07
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (2 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,6 +1,5 @@ 1 1 {{seiteninhalt/}} 2 2 3 -[[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Werte der Tangentensteigung graphisch bestimmen 4 4 [[Kompetenzen.K4]] [[Kompetenzen.K1]] Ich kann aus Werten der Tangentensteigung einen Graphen zeichnen und diesen als Graphen der Ableitungsfunktion deuten 5 5 [[Kompetenzen.K6]] Ich kann Zusammenhänge zwischen den beiden Funktionsgraphen beschreiben 6 6 [[Kompetenzen.K4]] [[Kompetenzen.K1]] Ich kann erste Hypothesen über einen möglichen algebraischen Zusammenhang zwischen Funktion und Ableitungsfunktion entwickeln ... ... @@ -9,13 +9,6 @@ 9 9 **Interaktiv Erkunden:** [[Graphisches Ableiten>>https://kmap.eu/app/browser/Mathematik/Differentialrechnung/Graphisches%20Ableiten#erkunden]] 10 10 {{/lernende}} 11 11 12 -* Punktweise graphisch ableiten 13 -* Qualitativ graphisch ableiten 14 -* Zusammenhänge HP, TP, SP vorwärts und rückwärts 15 - 16 -* Funktionsterm der Ableitungsfunktion aus Tangentensteigungen aufstellen 17 -* Beobachtungen bei e^x 18 - 19 19 {{aufgabe id="Tangenten einzeichnen" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 20 20 Zeichne jeweils die Tangenten an den Stellen {{formula}}x\in\{-1; 0; 1\}{{/formula}} ein und bestimme deren Steigungen. 21 21 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] ... ... @@ -27,7 +27,7 @@ 27 27 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] 28 28 {{/aufgabe}} 29 29 30 -{{aufgabe id="Punkte mit gegebener Steigung finden" afb="I I" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="5"}}22 +{{aufgabe id="Punkte mit gegebener Steigung finden" afb="I" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="5"}} 31 31 Es ist das Schaubild {{formula}}K_f{{/formula}} einer Funktion {{formula}}f{{/formula}} gegeben. Kennzeichne Punkte auf {{formula}}K_f{{/formula}}, für die gilt: 32 32 (%class=abc%) 33 33 1. die Steigung der Tangente in diesem Punkt ist 1 ... ... @@ -36,6 +36,16 @@ 36 36 [[image:Tangentensteigung.svg|| width="700px"]] 37 37 {{/aufgabe}} 38 38 31 +{{aufgabe id="Zuordnung" afb="I" kompetenzen="K4, K5" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung"}} 32 +Ordne jedem Funktionsgraph (grün) den Graphen ihrer Steigungsfunktion (blau) zu. Begründe deine Zuordnung. 33 + 34 +(% style="float:left; margin-right: 16px" %) 35 +| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 36 +| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 37 +| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 38 +| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 39 +{{/aufgabe}} 40 + 39 39 {{aufgabe id="Steigungsfunktion zeichnen" afb="II" kompetenzen="K1, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 40 40 (% style="float:left; margin-right: 16px" %) 41 41 Skizziere das Schaubild der Steigungsfunktion. ... ... @@ -42,7 +42,6 @@ 42 42 [[image:Schaubild.svg||width=500]] 43 43 {{/aufgabe}} 44 44 45 - 46 46 {{aufgabe id="Beschleunigung" afb="II" kompetenzen="K1, K3, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="6"}} 47 47 Ein Auto soll auf freier Autobahn auf {{formula}}180\frac{km}{h}{{/formula}} beschleunigen. Die Geschwindigkeit wird annähernd durch {{formula}}v(t)=180\cdot(1-e^{-0,1t}){{/formula}} beschrieben. {{formula}}v(t){{/formula}} beschreibt hierbei die momentante Geschwindigkeit zum Zeitpunkt {{formula}}t{{/formula}} in Sekunden. Der Verlauf der Geschwindigkeit ist dem Schaubild zu entnehmen. 48 48 [[image:Beschleunigung.svg|| width="500px"]] ... ... @@ -53,27 +53,17 @@ 53 53 1. Skizziere ein Schaubild, aus welchem die Beschleunigung zum Zeitpunkt t hervorgeht. 54 54 {{/aufgabe}} 55 55 56 -{{aufgabe id="Zuordnung I" afb="I" kompetenzen="" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung I"}} 57 - Ordne jedem Funktionsgraph (grün) den Graphen ihrer Steigungsfunktion (blau) zu. Begründe deine Zuordnung. 58 - 59 -(% style="float:left; margin-right: 16px" %) 60 -| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 61 -| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 62 -| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 63 -| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 64 -{{/aufgabe}} 65 - 66 -{{aufgabe id="algebraischer Zusammenhang I" afb="III" kompetenzen="K1, K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="8" interaktiv=}} 57 +{{aufgabe id="Algebraischer Zusammenhang I" afb="III" kompetenzen="K1, K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="8" interaktiv=}} 67 67 Das blaue Schaubild zeigt eine Funktion, das rote Schaubild zeigt ihre Steigungsfunktion. 68 68 (%class=abc%) 69 69 1. Bestimme die Gleichungen der beiden Schaubilder. 70 70 1. Welchen Grad besitzen die beiden Funktionen? 71 71 1. Stelle eine Hypothese auf, welchen Grad die Steigungsfunktion einer Funktion 4. Grades hat und überlege dir, wie du die Hypothese überprüfen kannst. 72 - 63 + 73 73 [[image:algebra.png||width=300]] 74 74 {{/aufgabe}} 75 75 76 -{{aufgabe id=" algebraischer Zusammenhang II" afb="II" kompetenzen="K1, K2, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}}67 +{{aufgabe id="Algebraischer Zusammenhang II" afb="II" kompetenzen="K1, K2, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 77 77 Das blaue Schaubild zeigt eine Funktion, die roten Schaubilder zeigen ihre möglichen Steigungsfunktionen. 78 78 [[image:algebra2.png||width=200]] 79 79 ... ... @@ -83,8 +83,6 @@ 83 83 1. Welchen (möglichen) Grad besitzen die drei Funktionen? 84 84 {{/aufgabe}} 85 85 86 - 87 - 88 88 {{aufgabe id="Skizzieren anhand Eigenschaften" afb="III" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="10"}} 89 89 (%class=abc%) 90 90 1. Skizziere eine mögliche Parabel 2. Grades, welche eine waagrechte Tangente an der Stelle {{formula}}x = -2{{/formula}} hat. Welche Gemeinsamkeiten haben alle Parabeln mit dieser Eigenschaft?
- Ableitungsfunktion.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -47.9 KB - Inhalt
- Schaubild.ggb
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. wies1 +XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,1 @@ 1 - 45.0KB1 +69.7 KB - Inhalt
- Schaubild.svg
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. wies1 +XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,1 @@ 1 -1 7.6KB1 +11.1 KB - Inhalt
-
... ... @@ -1,1 +1,1 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="5 81" height="452"><defs><clipPath id="OSZEIRrgBGiM"><path fill="none" stroke="none" d=" M 0 0 L 5810 L 581452 L 0452 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#OSZEIRrgBGiM)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="582" height="453" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 61.5 0.5 L 61.5452.5 M 61.5 0.5 L 61.5452.5 M 135.5 0.5 L 135.5452.5 M 208.5 0.5 L 208.5452.5 M 281.5 0.5 L 281.5452.5 M 354.5 0.5 L 354.5452.5 M 427.50.5 L 427.5 452.5M574.5 0.5 L574.5452.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M3.5 0.5 L3.5452.5 M17.5 0.5 L17.5452.5 M 32.5 0.5 L 32.5452.5 M47.5 0.5 L47.5452.5 M 76.5 0.5 L 76.5452.5 M 91.5 0.5 L 91.5452.5 M 105.5 0.5 L 105.5452.5 M 120.5 0.5 L 120.5452.5 M 149.5 0.5 L 149.5452.5 M 164.5 0.5 L 164.5452.5 M 179.5 0.5 L 179.5452.5 M 193.5 0.5 L 193.5452.5 M 222.5 0.5 L 222.5452.5 M 237.5 0.5 L 237.5452.5 M 252.5 0.5 L 252.5452.5 M 266.5 0.5 L 266.5452.5 M 296.5 0.5 L 296.5452.5 M 310.5 0.5 L 310.5452.5 M 325.5 0.5 L 325.5452.5 M 340.5 0.5 L 340.5452.5 M 369.5 0.5 L 369.5452.5 M 383.5 0.5 L 383.5452.5 M 398.5 0.5 L 398.5452.5 M 413.5 0.5 L 413.5452.5 M 442.5 0.5 L 442.5452.5 M 457.5 0.5 L 457.5452.5 M 471.5 0.5 L 471.5452.5 M 486.5 0.5 L 486.5452.5 M 515.5 0.5 L 515.5452.5 M 530.5 0.5 L 530.5452.5 M 545.5 0.5 L 545.5452.5 M 559.5 0.5 L 559.5452.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.561.5 L 581.5 61.5 M 0.5 61.5 L 581.5 61.5 M 0.5 134.5L 581.5134.5 M 0.5 207.5 L 581.5207.5M 0.5280.5L 581.5 280.5M 0.5 427.5 L 581.5 427.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.52.5 L 581.52.5M 0.517.5 L 581.5 17.5M 0.531.5 L 581.5 31.5 M 0.546.5L 581.546.5 M 0.5 75.5 L 581.5 75.5 M 0.590.5L 581.590.5 M 0.5 104.5L 581.5 104.5M 0.5119.5L 581.5119.5M 0.5148.5 L 581.5 148.5M 0.5163.5 L 581.5 163.5 M 0.5178.5 L 581.5178.5 M 0.5 192.5 L 581.5 192.5 M 0.5 222.5 L 581.5 222.5 M 0.5236.5 L 581.5236.5 M 0.5251.5 L 581.5251.5M0.5265.5 L 581.5 265.5M 0.5295.5 L 581.5295.5M 0.5 309.5 L 581.5309.5M 0.5324.5 L 581.5 324.5M 0.5339.5 L 581.5 339.5 M 0.5368.5 L 581.5368.5 M 0.5383.5 L 581.5 383.5 M0.5397.5L 581.5 397.5 M 0.5412.5L 581.5412.5 M0.5441.5 L 581.5 441.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M501.5 2.5 L501.5452.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M501.5 1.5 L 497.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M501.5 1.5 L505.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5353.5 L 579.5353.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5353.5 L 576.5349.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5353.5 L 576.5357.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><textfill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><textfill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203"y="369"text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270" y="369"text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270"y="369"text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><textfill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)"stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal"font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal"text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic"fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none"font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)"stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="139" text-anchor="start" dominant-baseline="alphabetic"fill-opacity="1">3</text><textfill="rgb(37,37,37)"stroke="none"font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal"x="487"y="139" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487"y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)"stroke="none"font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px"font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)"paint-order="fillstroke markers" d=" M4.5390625-10.769455542957814L 5.106445312499943-1.4480819630760493L 5.6738281257.707330593543077 L 6.2412109375 16.69865811751987 L 6.8085937525.527762873774122L 7.3759765625 34.196493462211606 L7.943359374999943 42.706684878286126L8.510742187499943.06015857344062L9.078125 59.25872251541398L9.6455078125 67.30417124843257 L10.212890625 75.19828595327175L10.780273437499943 82.94283450719308 L 11.34765624999994390.53957154376013L11.915039062597.99023851252085L12.482421875 105.2965637385746L13.0498046875 112.46026248200815L13.6171875 119.4830369972091 L14.184570312499943126.36657659205275 L14.751953124999943133.1125576869683 L15.3193359375 139.72264387387156 L15.88671875146.19848597498176L16.4541015625152.54172210150836L 17.021484374999943 158.75397771221313 L 17.588867187499943 164.8368656718515L18.15625 170.7919863094813 L 18.7236328125176.62092747665324L19.291015625 182.32526460547388L19.8583984375 187.90656076654352 L20.425781249999943193.36636672676886L20.993164062499943198.7062210070537L 21.560546875203.9276499398584L 22.1279296875209.03216772664086L22.6953125214.02127649516888L23.830078124999943 223.6592154630882L 24.96484375 232.8532445619956L26.099609375241.61495197828742L27.234375249.9557381784108 L28.369140625257.88681771289833L29.503906249999943265.4192210124004 L 30.638671875272.56379617572605L 31.7734375279.33121074987963L32.90820312499994 285.73195350210324 L 34.04296875291.7763361839211 L35.177734375297.4744952871827L36.3124999999999402.83639379211127 L38.58203125 312.5904038020287 L40.8515625321.114665744848 L43.12109375 328.48281349707133 L45.39062499999994334.7658698103819L49.9296875 344.3480670989083L52.19921875347.7766815558416 L54.46874999999994 350.37925701388235 L56.73828125352.2145606328206 L 57.87304687499994 352.86222138780556L59.0078125353.33906487738346L60.14257812499994353.6517999719894 L61.27734375353.8069984639655 L 62.412109375 353.8110966316525 L63.54687499999994 353.6703967954844 L65.81640625352.97915188436144 L 66.95117187499994 352.4405555536138 L 68.0859375351.7810617636273L72.624999999999948.045361012005 L77.1640625342.80564459094853 L 81.703125336.3738351963207 L86.2421875329.0329192349157L90.78124999999994321.0384051298641L95.3203125312.6197488660443 L99.859375303.98174677550026L 104.398437595.3058955628646L108.93749999999994 286.75171957078726L 113.47656249999994 278.4580652853715L 118.015625270.5443630816147 L 122.55468749999994263.1118562088557 L 127.09375256.2447970162274L 131.63281249999994250.01161041811633L 136.171875244.46602459962736 L 140.71093749999994239.64816896205485 L 145.25235.58563930835933L 149.7890625232.29453026865067L 154.328125 229.7804349656767 L 158.86718749999994228.03941192031823 L163.40625 227.05891919708955L 167.9453125226.8187157896454L 172.484375227.29173024629353 L 177.02343749999994 228.4448965355134 L 181.5625230.23995715148084L 186.1015625 232.6342334595984L 190.64062499999994 235.5813632820321L 195.17968749999994239.03200572325392L 199.71874999999994 242.9345132355902L 204.2578125247.23557092477597 L 208.79687499999994251.88080309551532L 213.33593749999994256.8153470370479 L 217.87499999999994261.9843940487212L 222.41406249999994267.33369770556857 L 226.95312499999994 272.81004936389365L 231.49218749999994 278.36172090686046 L 236.03124999999994283.9388747300896 L 240.5703124999999489.49394096726024L 245.10937499999997294.9819619557183 L 249.64843749999997 300.3609039420903L254.18749999999997305.59193602790356L 258.7265625310.6396763552119L 263.265625315.4724055322278 L 267.8046875 320.06224729895996 L 272.34375324.3853164328573L 276.8828125328.42183389445876L 281.421875332.156209213049 L 285.9609375335.57709011232004 L 290.5 338.6773793760389 L 295.0390625341.45421895372147L 299.578125343.90894130631176 L 304.11718749999994 346.0469879918676 L 308.65625347.8777954912522L313.19531249999994 349.41464827383146L 317.734375350.6744991031776 L 322.27343749999994 351.6777565827782 L 326.8125352.44803994175203 L 331.35156249999994 353.0119010605699L 335.890625353.39851373678215 L 340.42968749999994 353.63933019075193L 344.96875353.7677048113941 L 349.50781249999994 353.81848514192075L 354.04687553.82757010559203L 358.58593749999994 353.8314354714733L 363.125 353.86662656019826L367.66406249999994 353.9692181897377L 372.203125354.1742418611747L 376.74218749999994 354.51508018448544L 381.28124999999994 355.02282854432593 L 385.82031249999994355.7256240058251 L 390.35937499999994 356.6479414603834L 394.8984375357.8098570114776L 399.43749999999994359.2262786004715L403.9765625360.9061438724327L408.51562499999994362.85158528195495L413.0546875365.05706243898715L417.59374999999994 367.50846169466746L422.1328125370.1821629671643 L426.67187499999994 373.0440738075223L431.2109375376.0486307055151 L435.74999999999994 379.1377676355037L 440.28906249999994 382.2398518423006 L444.82812499999994385.26858686704037L449.36718749999994388.12188281305583 L453.90624999999994390.6806938517602L 458.44531249999994392.8078229685355 L 462.98437499999994394.34669394862635L 467.52343749999994 395.1200906030406L 469.79296874999994 395.15839459728323L 472.06249999999994394.9288632344548L 474.33203124999994394.40295809658926L 476.60156249999994393.55060234312685L 478.87109374999994392.3401374726615L 481.1406249999999 390.7382795728136 L485.67968749999994 386.2188558966948L 487.94921874999994 383.22619432340196 L 490.218759.69185704330323L 494.75781249999994370.8279161624607 L 497.02734374999994 365.4083989755744L 499.296875359.2672837312192L 501.56640624999994 352.3546046031638L503.83593749999994344.6183046998097L506.10546874999994 336.0041866834404L508.37499999999994326.45586287759477L 509.50976562499994321.3131413402391L510.64453124999994 315.9147048625672 L511.779296875310.2528664225161L 512.9140624999999 304.3197925590298 L 514.048828125 298.1075017529284 L 515.1835937499999291.6078627997824L 516.3183593749999284.81259317478435L 517.453125 277.71325738962656 L 518.5878906249999 270.3012653413786L519.72265625 262.5678706533657L520.857421875 254.5041690080528 L521.9921874999999 246.1010964719276L523.126953125 237.34942781238436L524.2617187499999228.2397748066153 L525.3964843749999218.76258454249597 L 526.53125 208.90813771148058L527.0986328125203.83635987853134L527.6660156249999198.6665468934941L528.2333984374999193.39743627873503 L528.80078125 188.02775483382584L 529.3681640625 182.55621858125733L529.93554687576.98153271203043 L530.5029296874999171.30239153112254L531.0703124999999165.5174784028256 L531.6376953124999159.62546569596574 L532.205078125 153.62501472899146 L532.7724609375 147.51477571493984L533.33984375 141.29338770627768L533.9072265624999134.95947853961778 L 534.4746093749999 128.51166478030711L 535.0419921875121.94855166689678 L 535.609375 115.2687330554804L 536.1767578125108.47079136391059 L 536.7441406249999101.55329751589073L 537.311523437499994.51481088493784L 537.8789062587.35387923822844L 538.446289062580.06903868031151L 539.01367187572.65881359670016L 539.5810546874999 65.12171659733878L 540.148437499999957.45624845994075L 540.7158203124999 49.66089807321015L 541.28320312541.734142379928585 L 541.8505859375 33.67444631992362 L 542.4179687525.480262772909043 L 542.9853515624999 17.150032501202418 L543.55273437499998.68218409231281 L 544.12011718750.07513390141292575L 544.6875 -8.672714006323531" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="545" height="228"><defs><clipPath id="ICZzpGvxqsZH"><path fill="none" stroke="none" d=" M 0 0 L 545 0 L 545 228 L 0 228 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#ICZzpGvxqsZH)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="546" height="229" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 65.5 0.5 L 65.5 228.5 M 65.5 0.5 L 65.5 228.5 M 135.5 0.5 L 135.5 228.5 M 205.5 0.5 L 205.5 228.5 M 275.5 0.5 L 275.5 228.5 M 346.5 0.5 L 346.5 228.5 M 416.5 0.5 L 416.5 228.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 8.5 0.5 L 8.5 228.5 M 23.5 0.5 L 23.5 228.5 M 37.5 0.5 L 37.5 228.5 M 51.5 0.5 L 51.5 228.5 M 79.5 0.5 L 79.5 228.5 M 93.5 0.5 L 93.5 228.5 M 107.5 0.5 L 107.5 228.5 M 121.5 0.5 L 121.5 228.5 M 149.5 0.5 L 149.5 228.5 M 163.5 0.5 L 163.5 228.5 M 177.5 0.5 L 177.5 228.5 M 191.5 0.5 L 191.5 228.5 M 219.5 0.5 L 219.5 228.5 M 233.5 0.5 L 233.5 228.5 M 247.5 0.5 L 247.5 228.5 M 261.5 0.5 L 261.5 228.5 M 290.5 0.5 L 290.5 228.5 M 304.5 0.5 L 304.5 228.5 M 318.5 0.5 L 318.5 228.5 M 332.5 0.5 L 332.5 228.5 M 360.5 0.5 L 360.5 228.5 M 374.5 0.5 L 374.5 228.5 M 388.5 0.5 L 388.5 228.5 M 402.5 0.5 L 402.5 228.5 M 430.5 0.5 L 430.5 228.5 M 444.5 0.5 L 444.5 228.5 M 458.5 0.5 L 458.5 228.5 M 472.5 0.5 L 472.5 228.5 M 500.5 0.5 L 500.5 228.5 M 514.5 0.5 L 514.5 228.5 M 528.5 0.5 L 528.5 228.5 M 543.5 0.5 L 543.5 228.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 23.5 L 545.5 23.5 M 0.5 23.5 L 545.5 23.5 M 0.5 94.5 L 545.5 94.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 545.5 9.5 M 0.5 9.5 L 545.5 9.5 M 0.5 37.5 L 545.5 37.5 M 0.5 51.5 L 545.5 51.5 M 0.5 66.5 L 545.5 66.5 M 0.5 80.5 L 545.5 80.5 M 0.5 108.5 L 545.5 108.5 M 0.5 122.5 L 545.5 122.5 M 0.5 136.5 L 545.5 136.5 M 0.5 150.5 L 545.5 150.5 M 0.5 178.5 L 545.5 178.5 M 0.5 192.5 L 545.5 192.5 M 0.5 206.5 L 545.5 206.5 M 0.5 220.5 L 545.5 220.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 486.5 2.5 L 486.5 228.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 486.5 1.5 L 482.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 486.5 1.5 L 490.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 164.5 L 543.5 164.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5 164.5 L 540.5 160.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5 164.5 L 540.5 168.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="200" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="264" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="341" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="405" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="99" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="28" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 23.41796875 -9.170485627643473 L 23.9501953125 -3.7457423728209562 L 24.482421875000057 1.5652902151862236 L 25.0146484375 6.764008526574855 L 25.546875000000057 11.851798197845255 L 26.611328125000057 21.70008069329819 L 27.67578125 31.121009590865157 L 28.740234375 40.12528786594427 L 29.8046875 48.72345114304754 L 30.869140625 56.925869252150406 L 31.93359375 64.74274777835527 L 32.998046875 72.18412960486907 L 34.0625 79.25989644929483 L 35.12695312500006 85.97977039323716 L 36.19140625000006 92.35331540522024 L 37.25585937500006 98.38993885692322 L 38.3203125 104.09889303272591 L 39.384765625 109.48927663257018 L 40.44921875 114.570036268135 L 42.578125 123.83771858207503 L 44.70703125000006 131.97052753614742 L 46.83593750000006 139.03471191168651 L 48.96484375 145.09422841061243 L 51.09375 150.21078792837304 L 55.35156250000006 157.85092521212604 L 57.48046875 160.4871062024185 L 59.609375 162.4056262106712 L 60.673828125 163.11182889477817 L 61.73828125 163.6576462173124 L 62.802734375 164.04916471182403 L 63.86718750000006 164.29235004787418 L 64.93164062500006 164.39304837343013 L 65.99609375000006 164.35698765057487 L 67.060546875 164.18977898453 L 68.125 163.8969179459931 L 70.25390625 162.95565124883277 L 72.3828125 161.57489126177992 L 76.64062500000006 157.65292213642957 L 80.8984375 152.43007675937747 L 85.15625000000006 146.1791312459447 L 89.4140625 139.14784012883206 L 93.671875 131.56017746346132 L 97.9296875 123.61755054716527 L 102.1875 115.49998625222594 L 106.4453125 107.36728997276005 L 110.703125 99.360177185454 L 114.9609375 91.60137762414548 L 119.21875 84.19671206825414 L 123.47656250000006 77.23614174506059 L 127.734375 70.7947903458325 L 131.9921875 64.93393865579955 L 136.25 59.701991797976376 L 140.5078125 55.13541909083392 L 144.76562500000006 51.25966651981798 L 149.0234375 48.09004182271708 L 153.28125 45.63257218887746 L 157.5390625 43.88483457226677 L 161.79687500000006 42.83675861838576 L 166.0546875 42.471402205027886 L 170.3125 42.765699596887316 L 174.57031249999994 43.69118221401479 L 178.828125 45.214672014121945 L 183.08593750000006 47.298947488733404 L 187.34375 49.903382273187006 L 191.6015625 52.98455637048269 L 195.859375 56.49683998897869 L 200.1171875 60.39294999393637 L 204.37500000000006 64.6244789729133 L 208.6328125 69.14239691500366 L 212.890625 73.89752550392802 L 217.1484375 78.84098502496998 L 221.40625 83.92461388576166 L 225.6640625 89.10136075091732 L 229.921875 94.32564929051456 L 234.1796875 99.55371554242437 L 238.4375 104.74391788848862 L 242.6953125 109.85701964454617 L 246.953125 114.85644426430676 L 251.21093750000003 119.70850315707332 L 255.46875000000003 124.38259611931211 L 259.7265625 128.85138438007112 L 263.984375 133.09093626024682 L 268.2421875 137.0808454456984 L 272.5 140.80432187421076 L 276.7578125 144.24825523630545 L 281.015625 147.40325108989947 L 285.2734375 150.26363958881254 L 289.53125 152.82745682512214 L 293.7890625 155.0963987853672 L 298.046875 157.07574792059916 L 302.3046875 158.7742723302819 L 306.5625 160.2040975600392 L 310.8203125 161.3805510132508 L 315.078125 162.32197897649615 L 319.3359375 163.04953625884664 L 323.59375 163.58694844500567 L 327.8515625 163.96024676229703 L 332.109375 164.19747556150128 L 336.3671875 164.32837241154036 L 340.625 164.38402080801023 L 344.8828125 164.39647549556167 L 349.140625 164.39836040412916 L 353.3984375 164.42243919900793 L 357.65625 164.5011584447791 L 361.9140625 164.666163383083 L 366.171875 164.94778632424044 L 370.4296875 165.37450765272237 L 374.6875 165.97238944646742 L 378.9453125 166.76448171004765 L 383.203125 167.77020122168238 L 387.4609375 169.0046829941003 L 391.71875 170.47810434924952 L 395.9765625 172.19498160685563 L 400.234375 174.1534393868284 L 404.4921875 176.34445252551598 L 408.75 178.7510606058074 L 413.0078125 181.34755510108369 L 417.265625 184.0986391330162 L 421.5234375 186.958559843214 L 425.78125 189.87021337871855 L 430.0390625 192.7642224913472 L 434.296875 195.5579867508844 L 438.5546875 198.15470537212087 L 442.8125 200.4423726557417 L 447.0703125 202.29274604306138 L 451.328125 203.56028678460808 L 455.5859375 204.08107322255526 L 457.71484375 204.0049078707728 L 459.84375 203.67168668700188 L 461.97265625 203.05524865368614 L 464.1015625 202.1280700061004 L 466.23046875 200.8612270631119 L 468.359375 199.22435863003312 L 472.6171875 194.7116843688365 L 476.875 188.3169517440739 L 481.1328125 179.74158695435565 L 483.26171875 174.53558240607458 L 485.390625 168.6602594547087 L 487.51953125 162.07055680702604 L 489.6484375 154.7195761497925 L 491.77734375 146.5585398456295 L 493.90625 137.53674820096427 L 496.03515625 127.60153630606882 L 497.099609375 122.27439189877622 L 498.1640625 116.69823044719304 L 499.228515625 110.86589664013368 L 500.29296874999994 104.77010409078775 L 501.357421875 98.40343393782553 L 502.421875 91.75833343981903 L 503.486328125 84.82711456297335 L 504.55078125 77.6019525621758 L 505.615234375 70.0748845553568 L 506.6796875 62.23780809116526 L 507.744140625 54.08247970995805 L 508.80859375 45.600513498102984 L 509.87304687499994 36.78337963559615 L 510.9375 27.62240293699233 L 512.001953125 18.108761385652315 L 513.06640625 8.233484661298377 L 513.5986328125 3.157388968512066 L 514.130859375 -2.0125473391105686 L 514.6630859375 -7.2774879217727175" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>