Änderungen von Dokument BPE 6.3 Graphisches Ableiten
Zuletzt geändert von Holger Engels am 2025/08/02 07:35
Von Version 173.2
bearbeitet von Holger Engels
am 2025/07/22 18:24
am 2025/07/22 18:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 171.1
bearbeitet von Holger Engels
am 2025/07/21 17:07
am 2025/07/21 17:07
Änderungskommentar:
Löschung des Anhangs Ableitungsfunktion.ggb
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -9,6 +9,13 @@ 9 9 **Interaktiv Erkunden:** [[Graphisches Ableiten>>https://kmap.eu/app/browser/Mathematik/Differentialrechnung/Graphisches%20Ableiten#erkunden]] 10 10 {{/lernende}} 11 11 12 +* Punktweise graphisch ableiten 13 +* Qualitativ graphisch ableiten 14 +* Zusammenhänge HP, TP, SP vorwärts und rückwärts 15 + 16 +* Funktionsterm der Ableitungsfunktion aus Tangentensteigungen aufstellen 17 +* Beobachtungen bei e^x 18 + 12 12 {{aufgabe id="Tangenten einzeichnen" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 13 13 Zeichne jeweils die Tangenten an den Stellen {{formula}}x\in\{-1; 0; 1\}{{/formula}} ein und bestimme deren Steigungen. 14 14 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] ... ... @@ -20,7 +20,7 @@ 20 20 [[image:Tangenten einzeichnen 1.svg|| width="350px"]] [[image:Tangenten einzeichnen 2.svg|| width="350px"]] [[image:Tangenten einzeichnen 3.svg|| width="350px"]] [[image:Tangenten einzeichnen 4.svg|| width="350px"]] 21 21 {{/aufgabe}} 22 22 23 -{{aufgabe id="Punkte mit gegebener Steigung finden" afb="I" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="5"}} 30 +{{aufgabe id="Punkte mit gegebener Steigung finden" afb="II" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek und Simone Kanzler" cc="BY-SA" zeit="5"}} 24 24 Es ist das Schaubild {{formula}}K_f{{/formula}} einer Funktion {{formula}}f{{/formula}} gegeben. Kennzeichne Punkte auf {{formula}}K_f{{/formula}}, für die gilt: 25 25 (%class=abc%) 26 26 1. die Steigung der Tangente in diesem Punkt ist 1 ... ... @@ -29,16 +29,6 @@ 29 29 [[image:Tangentensteigung.svg|| width="700px"]] 30 30 {{/aufgabe}} 31 31 32 -{{aufgabe id="Zuordnung" afb="I" kompetenzen="K4, K5" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung"}} 33 -Ordne jedem Funktionsgraph (grün) den Graphen ihrer Steigungsfunktion (blau) zu. Begründe deine Zuordnung. 34 - 35 -(% style="float:left; margin-right: 16px" %) 36 -| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 37 -| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 38 -| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 39 -| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 40 -{{/aufgabe}} 41 - 42 42 {{aufgabe id="Steigungsfunktion zeichnen" afb="II" kompetenzen="K1, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 43 43 (% style="float:left; margin-right: 16px" %) 44 44 Skizziere das Schaubild der Steigungsfunktion. ... ... @@ -45,6 +45,7 @@ 45 45 [[image:Schaubild.svg||width=500]] 46 46 {{/aufgabe}} 47 47 45 + 48 48 {{aufgabe id="Beschleunigung" afb="II" kompetenzen="K1, K3, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="6"}} 49 49 Ein Auto soll auf freier Autobahn auf {{formula}}180\frac{km}{h}{{/formula}} beschleunigen. Die Geschwindigkeit wird annähernd durch {{formula}}v(t)=180\cdot(1-e^{-0,1t}){{/formula}} beschrieben. {{formula}}v(t){{/formula}} beschreibt hierbei die momentante Geschwindigkeit zum Zeitpunkt {{formula}}t{{/formula}} in Sekunden. Der Verlauf der Geschwindigkeit ist dem Schaubild zu entnehmen. 50 50 [[image:Beschleunigung.svg|| width="500px"]] ... ... @@ -55,17 +55,27 @@ 55 55 1. Skizziere ein Schaubild, aus welchem die Beschleunigung zum Zeitpunkt t hervorgeht. 56 56 {{/aufgabe}} 57 57 58 -{{aufgabe id="Algebraischer Zusammenhang I" afb="III" kompetenzen="K1, K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="8" interaktiv=}} 56 +{{aufgabe id="Zuordnung I" afb="I" kompetenzen="K4, K5" quelle="KMap" cc="BY-SA" zeit="4" interaktiv="Interaktiv Zuordnung I"}} 57 + Ordne jedem Funktionsgraph (grün) den Graphen ihrer Steigungsfunktion (blau) zu. Begründe deine Zuordnung. 58 + 59 +(% style="float:left; margin-right: 16px" %) 60 +| [[image:Polynome zuordnen f.svg||width=200]] | | | | | [[image:Polynome zuordnen C.svg||width=200]] 61 +| [[image:Polynome zuordnen g.svg||width=200]] | | | | | [[image:Polynome zuordnen D.svg||width=200]] 62 +| [[image:Polynome zuordnen h.svg||width=200]] | | | | | [[image:Polynome zuordnen B.svg||width=200]] 63 +| [[image:Polynome zuordnen i.svg||width=200]] | | | | | [[image:Polynome zuordnen A.svg||width=200]] 64 +{{/aufgabe}} 65 + 66 +{{aufgabe id="algebraischer Zusammenhang I" afb="III" kompetenzen="K1, K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="8" interaktiv=}} 59 59 Das blaue Schaubild zeigt eine Funktion, das rote Schaubild zeigt ihre Steigungsfunktion. 60 60 (%class=abc%) 61 61 1. Bestimme die Gleichungen der beiden Schaubilder. 62 62 1. Welchen Grad besitzen die beiden Funktionen? 63 63 1. Stelle eine Hypothese auf, welchen Grad die Steigungsfunktion einer Funktion 4. Grades hat und überlege dir, wie du die Hypothese überprüfen kannst. 64 - 72 + 65 65 [[image:algebra.png||width=300]] 66 66 {{/aufgabe}} 67 67 68 -{{aufgabe id=" Algebraischer Zusammenhang II" afb="II" kompetenzen="K1, K2, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}}76 +{{aufgabe id="algebraischer Zusammenhang II" afb="II" kompetenzen="K1, K2, K4, K6" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="5" interaktiv=}} 69 69 Das blaue Schaubild zeigt eine Funktion, die roten Schaubilder zeigen ihre möglichen Steigungsfunktionen. 70 70 [[image:algebra2.png||width=200]] 71 71 ... ... @@ -75,6 +75,8 @@ 75 75 1. Welchen (möglichen) Grad besitzen die drei Funktionen? 76 76 {{/aufgabe}} 77 77 86 + 87 + 78 78 {{aufgabe id="Skizzieren anhand Eigenschaften" afb="III" kompetenzen="K2, K4, K5" quelle="Stephanie Wietzorek, Simone Kanzler" cc="BY-SA" zeit="10"}} 79 79 (%class=abc%) 80 80 1. Skizziere eine mögliche Parabel 2. Grades, welche eine waagrechte Tangente an der Stelle {{formula}}x = -2{{/formula}} hat. Welche Gemeinsamkeiten haben alle Parabeln mit dieser Eigenschaft?
- Schaubild.ggb
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.wies - Größe
-
... ... @@ -1,1 +1,1 @@ 1 - 69.7KB1 +45.0 KB - Inhalt
- Schaubild.svg
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.wies - Größe
-
... ... @@ -1,1 +1,1 @@ 1 -1 1.1KB1 +17.6 KB - Inhalt
-
... ... @@ -1,1 +1,1 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="5 45" height="228"><defs><clipPath id="ICZzpGvxqsZH"><path fill="none" stroke="none" d=" M 0 0 L 5450 L 54528L 0 228L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#ICZzpGvxqsZH)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="546" height="229" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 65.5 0.5 L 65.5 228.5 M 65.5 0.5 L 65.5 228.5 M 135.5 0.5 L 135.5 228.5 M 205.5 0.5 L 205.5 228.5 M 275.5 0.5 L 275.5 228.5 M 346.5 0.5 L 346.5 228.5 M 416.5 0.5 L 416.5 228.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M8.5 0.5 L8.5 228.5 M23.5 0.5 L23.5 228.5 M 37.5 0.5 L 37.5 228.5 M51.5 0.5 L51.5 228.5 M 79.5 0.5 L 79.5 228.5 M 93.5 0.5 L 93.5 228.5 M 107.5 0.5 L 107.5 228.5 M 121.5 0.5 L 121.5 228.5 M 149.5 0.5 L 149.5 228.5 M 163.5 0.5 L 163.5 228.5 M 177.5 0.5 L 177.5 228.5 M 191.5 0.5 L 191.5 228.5 M 219.5 0.5 L 219.5 228.5 M 233.5 0.5 L 233.5 228.5 M 247.5 0.5 L 247.5 228.5 M 261.5 0.5 L 261.5 228.5 M 290.5 0.5 L 290.5 228.5 M 304.5 0.5 L 304.5 228.5 M 318.5 0.5 L 318.5 228.5 M 332.5 0.5 L 332.5 228.5 M 360.5 0.5 L 360.5 228.5 M 374.5 0.5 L 374.5 228.5 M 388.5 0.5 L 388.5 228.5 M 402.5 0.5 L 402.5 228.5 M 430.5 0.5 L 430.5 228.5 M 444.5 0.5 L 444.5 228.5 M 458.5 0.5 L 458.5 228.5 M 472.5 0.5 L 472.5 228.5 M 500.5 0.5 L 500.5 228.5 M 514.5 0.5 L 514.5 228.5 M 528.5 0.5 L 528.5 228.5 M 543.5 0.5 L 543.5 228.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.523.5 L 545.523.5 M 0.523.5 L 545.5 23.5 M 0.594.5 L 545.594.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.59.5 L 545.59.5 M 0.59.5 L 545.59.5 M 0.5 37.5 L 545.5 37.5 M 0.551.5 L 545.5 51.5 M 0.566.5 L 545.566.5 M 0.580.5 L 545.5 80.5 M 0.5 108.5 L 545.5 108.5 M 0.5 122.5 L 545.5 122.5 M 0.5136.5 L 545.5136.5 M 0.5150.5 L 545.5150.5 M 0.5178.5 L 545.5178.5 M 0.5 192.5 L 545.5 192.5 M 0.5206.5 L 545.5206.5 M 0.5220.5 L 545.5 220.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M486.5 2.5 L486.5 228.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M486.5 1.5 L 482.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M486.5 1.5 L490.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5164.5 L 543.5164.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5164.5 L 540.5160.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 544.5164.5 L 540.5168.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="60" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="200" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="264" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="341" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="405" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="99" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="28" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="472" y="180" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)"paint-order="fill stroke markers" d="M23.41796875-9.170485627643473L23.9501953125-3.7457423728209562L24.4824218750000571.5652902151862236L25.01464843756.764008526574855L25.546875000000057 11.851798197845255L26.611328125000057 21.70008069329819L27.67578125 31.121009590865157L28.740234375 40.12528786594427L29.804687548.72345114304754 L30.869140625 56.925869252150406L31.93359375 64.74274777835527 L32.998046875 72.18412960486907 L34.062579.25989644929483L 35.1269531250000685.97977039323716L36.19140625000006 92.35331540522024L37.25585937500006 98.38993885692322L38.3203125 104.09889303272591L 39.384765625109.48927663257018 L40.44921875 114.570036268135L 42.578125123.83771858207503L 44.70703125000006131.97052753614742L46.83593750000006139.03471191168651 L48.96484375 145.09422841061243 L51.09375150.21078792837304 L55.35156250000006157.85092521212604 L57.48046875 160.4871062024185L59.609375 162.4056262106712 L60.673828125163.11182889477817L61.73828125163.6576462173124L62.802734375 164.04916471182403L63.86718750000006164.29235004787418 L64.93164062500006164.39304837343013L 65.99609375000006164.35698765057487 L67.060546875164.18977898453L68.125163.8969179459931L70.25390625162.95565124883277L72.3828125 161.57489126177992L76.64062500000006157.65292213642957 L80.8984375152.43007675937747L 85.15625000000006146.1791312459447 L89.4140625139.14784012883206L93.671875131.56017746346132L 97.9296875123.61755054716527 L102.1875 115.49998625222594L106.4453125 107.36728997276005 L110.70312599.360177185454L 114.960937591.60137762414548 L 119.21875 84.19671206825414L123.4765625000000677.23614174506059L127.73437570.7947903458325 L 131.9921875 64.93393865579955L136.2559.701991797976376L140.507812555.13541909083392L144.7656250000000651.25966651981798 L 149.023437548.09004182271708 L 153.2812545.63257218887746L 157.539062543.88483457226677L 161.796875000000062.83675861838576 L 166.0546875 42.471402205027886 L 170.312542.765699596887316 L 174.5703124999999443.69118221401479 L 178.82812545.214672014121945 L 183.0859375000000647.298947488733404 L 187.3437549.903382273187006L 191.601562552.98455637048269 L 195.85937549683998897869L200.117187560.39294999393637L 204.3750000000000664.6244789729133L 208.6328125 69.14239691500366L 212.89062573.89752550392802L 217.1484375 78.84098502496998L221.4062583.92461388576166L 225.6640625 89.10136075091732L 229.92187594.32564929051456L234.179687599.55371554242437L 238.4375104.74391788848862L 242.6953125 109.85701964454617L 246.953125 114.85644426430676 L 251.21093750000003119.70850315707332L 255.46875000000003124.38259611931211L 259.7265625 128.85138438007112L 263.984375133.09093626024682 L 268.2421875137.0808454456984L 272.5140.80432187421076L 276.7578125144.24825523630545 L 281.015625147.40325108989947L 285.2734375150.26363958881254L 289.53125 152.82745682512214 L 293.7890625155.0963987853672 L 298.046875157.07574792059916 L 302.3046875158.7742723302819L 306.5625160.2040975600392L 310.82031251.3805510132508L 315.078125162.32197897649615 L 319.3359375163.04953625884664 L 323.5937563.58694844500567 L 327.851562596024676229703 L 332.109375164.19747556150128L 336.3671875164.32837241154036L 340.625164.38402080801023 L 344.8828125 164.39647549556167L 349.140625 164.39836040412916 L 353.3984375 164.42243919900793L357.65625 164.5011584447791 L 361.9140625164.666163383083L366.171875.94778632424044L 370.4296875165.37450765272237 L 374.68755.97238944646742L378.9453125 166.76448171004765 L 383.203125167.77020122168238L 387.4609375169.0046829941003 L391.71875170.47810434924952L395.9765625160685563 L 400.234375174.1534393868284L 404.4921875176.34445252551598 L 408.75178.7510606058074 L 413.0078125181.34755510108369 L 417.265625184.0986391330162L 421.5234375186.958559843214L 425.78125 189.87021337871855 L 430.0390625 192.7642224913472 L 434.296875195.5579867508844 L 438.5546875198.15470537212087L 442.8125200.4423726557417L447.0703125202.29274604306138 L451.328125 203.56028678460808L455.5859375204.08107322255526L457.71484375 204.0049078707728 L459.84375 203.67168668700188L461.97265625 203.05524865368614L 464.1015625 202.1280700061004 L466.23046875200.8612270631119L468.359375 199.22435863003312L472.6171875194.7116843688365 L476.875 188.3169517440739 L481.1328125179.74158695435565L483.26171875 174.53558240607458 L485.390625 168.6602594547087L 487.51953125162.07055680702604 L489.6484375154.7195761497925 L491.77734375146.5585398456295 L493.90625 137.53674820096427 L496.03515625 127.60153630606882 L497.099609375 122.27439189877622L498.1640625 116.69823044719304L499.228515625110.86589664013368 L 500.29296874999994104.77010409078775L 501.35742187598.40343393782553L 502.42187591.75833343981903L 503.486328125 84.82711456297335 L 504.5507812577.6019525621758 L 505.61523437570.0748845553568 L 506.679687562.23780809116526L 507.74414062554.08247970995805 L 508.8085937545.600513498102984L 509.8730468749999436.78337963559615L 510.937527.62240293699233L 512.001953125 18.108761385652315L 513.06640625.233484661298377 L 513.5986328125 3.157388968512066L 514.130859375-2.0125473391105686L 514.6630859375 -7.2774879217727175" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="581" height="452"><defs><clipPath id="OSZEIRrgBGiM"><path fill="none" stroke="none" d=" M 0 0 L 581 0 L 581 452 L 0 452 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#OSZEIRrgBGiM)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="582" height="453" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 61.5 0.5 L 61.5 452.5 M 61.5 0.5 L 61.5 452.5 M 135.5 0.5 L 135.5 452.5 M 208.5 0.5 L 208.5 452.5 M 281.5 0.5 L 281.5 452.5 M 354.5 0.5 L 354.5 452.5 M 427.5 0.5 L 427.5 452.5 M 574.5 0.5 L 574.5 452.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 3.5 0.5 L 3.5 452.5 M 17.5 0.5 L 17.5 452.5 M 32.5 0.5 L 32.5 452.5 M 47.5 0.5 L 47.5 452.5 M 76.5 0.5 L 76.5 452.5 M 91.5 0.5 L 91.5 452.5 M 105.5 0.5 L 105.5 452.5 M 120.5 0.5 L 120.5 452.5 M 149.5 0.5 L 149.5 452.5 M 164.5 0.5 L 164.5 452.5 M 179.5 0.5 L 179.5 452.5 M 193.5 0.5 L 193.5 452.5 M 222.5 0.5 L 222.5 452.5 M 237.5 0.5 L 237.5 452.5 M 252.5 0.5 L 252.5 452.5 M 266.5 0.5 L 266.5 452.5 M 296.5 0.5 L 296.5 452.5 M 310.5 0.5 L 310.5 452.5 M 325.5 0.5 L 325.5 452.5 M 340.5 0.5 L 340.5 452.5 M 369.5 0.5 L 369.5 452.5 M 383.5 0.5 L 383.5 452.5 M 398.5 0.5 L 398.5 452.5 M 413.5 0.5 L 413.5 452.5 M 442.5 0.5 L 442.5 452.5 M 457.5 0.5 L 457.5 452.5 M 471.5 0.5 L 471.5 452.5 M 486.5 0.5 L 486.5 452.5 M 515.5 0.5 L 515.5 452.5 M 530.5 0.5 L 530.5 452.5 M 545.5 0.5 L 545.5 452.5 M 559.5 0.5 L 559.5 452.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 61.5 L 581.5 61.5 M 0.5 61.5 L 581.5 61.5 M 0.5 134.5 L 581.5 134.5 M 0.5 207.5 L 581.5 207.5 M 0.5 280.5 L 581.5 280.5 M 0.5 427.5 L 581.5 427.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 2.5 L 581.5 2.5 M 0.5 17.5 L 581.5 17.5 M 0.5 31.5 L 581.5 31.5 M 0.5 46.5 L 581.5 46.5 M 0.5 75.5 L 581.5 75.5 M 0.5 90.5 L 581.5 90.5 M 0.5 104.5 L 581.5 104.5 M 0.5 119.5 L 581.5 119.5 M 0.5 148.5 L 581.5 148.5 M 0.5 163.5 L 581.5 163.5 M 0.5 178.5 L 581.5 178.5 M 0.5 192.5 L 581.5 192.5 M 0.5 222.5 L 581.5 222.5 M 0.5 236.5 L 581.5 236.5 M 0.5 251.5 L 581.5 251.5 M 0.5 265.5 L 581.5 265.5 M 0.5 295.5 L 581.5 295.5 M 0.5 309.5 L 581.5 309.5 M 0.5 324.5 L 581.5 324.5 M 0.5 339.5 L 581.5 339.5 M 0.5 368.5 L 581.5 368.5 M 0.5 383.5 L 581.5 383.5 M 0.5 397.5 L 581.5 397.5 M 0.5 412.5 L 581.5 412.5 M 0.5 441.5 L 581.5 441.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 501.5 2.5 L 501.5 452.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 501.5 1.5 L 497.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 501.5 1.5 L 505.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 353.5 L 579.5 353.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5 353.5 L 576.5 349.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 580.5 353.5 L 576.5 357.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="56" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="124" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="203" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="270" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="349" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="416" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="481" y="432" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="285" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="212" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="139" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="139" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="66" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="487" y="369" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 4.5390625 -10.769455542957814 L 5.106445312499943 -1.4480819630760493 L 5.673828125 7.707330593543077 L 6.2412109375 16.69865811751987 L 6.80859375 25.527762873774122 L 7.3759765625 34.196493462211606 L 7.943359374999943 42.706684878286126 L 8.510742187499943 51.06015857344062 L 9.078125 59.25872251541398 L 9.6455078125 67.30417124843257 L 10.212890625 75.19828595327175 L 10.780273437499943 82.94283450719308 L 11.347656249999943 90.53957154376013 L 11.9150390625 97.99023851252085 L 12.482421875 105.2965637385746 L 13.0498046875 112.46026248200815 L 13.6171875 119.4830369972091 L 14.184570312499943 126.36657659205275 L 14.751953124999943 133.1125576869683 L 15.3193359375 139.72264387387156 L 15.88671875 146.19848597498176 L 16.4541015625 152.54172210150836 L 17.021484374999943 158.75397771221313 L 17.588867187499943 164.8368656718515 L 18.15625 170.7919863094813 L 18.7236328125 176.62092747665324 L 19.291015625 182.32526460547388 L 19.8583984375 187.90656076654352 L 20.425781249999943 193.36636672676886 L 20.993164062499943 198.7062210070537 L 21.560546875 203.9276499398584 L 22.1279296875 209.03216772664086 L 22.6953125 214.02127649516888 L 23.830078124999943 223.6592154630882 L 24.96484375 232.8532445619956 L 26.099609375 241.61495197828742 L 27.234375 249.9557381784108 L 28.369140625 257.88681771289833 L 29.503906249999943 265.4192210124004 L 30.638671875 272.56379617572605 L 31.7734375 279.33121074987963 L 32.90820312499994 285.73195350210324 L 34.04296875 291.7763361839211 L 35.177734375 297.4744952871827 L 36.31249999999994 302.83639379211127 L 38.58203125 312.5904038020287 L 40.8515625 321.114665744848 L 43.12109375 328.48281349707133 L 45.39062499999994 334.7658698103819 L 49.9296875 344.3480670989083 L 52.19921875 347.7766815558416 L 54.46874999999994 350.37925701388235 L 56.73828125 352.2145606328206 L 57.87304687499994 352.86222138780556 L 59.0078125 353.33906487738346 L 60.14257812499994 353.6517999719894 L 61.27734375 353.8069984639655 L 62.412109375 353.8110966316525 L 63.54687499999994 353.6703967954844 L 65.81640625 352.97915188436144 L 66.95117187499994 352.4405555536138 L 68.0859375 351.7810617636273 L 72.62499999999994 348.045361012005 L 77.1640625 342.80564459094853 L 81.703125 336.3738351963207 L 86.2421875 329.0329192349157 L 90.78124999999994 321.0384051298641 L 95.3203125 312.6197488660443 L 99.859375 303.98174677550026 L 104.3984375 295.3058955628646 L 108.93749999999994 286.75171957078726 L 113.47656249999994 278.4580652853715 L 118.015625 270.5443630816147 L 122.55468749999994 263.1118562088557 L 127.09375 256.2447970162274 L 131.63281249999994 250.01161041811633 L 136.171875 244.46602459962736 L 140.71093749999994 239.64816896205485 L 145.25 235.58563930835933 L 149.7890625 232.29453026865067 L 154.328125 229.7804349656767 L 158.86718749999994 228.03941192031823 L 163.40625 227.05891919708955 L 167.9453125 226.8187157896454 L 172.484375 227.29173024629353 L 177.02343749999994 228.4448965355134 L 181.5625 230.23995715148084 L 186.1015625 232.6342334595984 L 190.64062499999994 235.5813632820321 L 195.17968749999994 239.03200572325392 L 199.71874999999994 242.9345132355902 L 204.2578125 247.23557092477597 L 208.79687499999994 251.88080309551532 L 213.33593749999994 256.8153470370479 L 217.87499999999994 261.9843940487212 L 222.41406249999994 267.33369770556857 L 226.95312499999994 272.81004936389365 L 231.49218749999994 278.36172090686046 L 236.03124999999994 283.9388747300896 L 240.57031249999994 289.49394096726024 L 245.10937499999997 294.9819619557183 L 249.64843749999997 300.3609039420903 L 254.18749999999997 305.59193602790356 L 258.7265625 310.6396763552119 L 263.265625 315.4724055322278 L 267.8046875 320.06224729895996 L 272.34375 324.3853164328573 L 276.8828125 328.42183389445876 L 281.421875 332.156209213049 L 285.9609375 335.57709011232004 L 290.5 338.6773793760389 L 295.0390625 341.45421895372147 L 299.578125 343.90894130631176 L 304.11718749999994 346.0469879918676 L 308.65625 347.8777954912522 L 313.19531249999994 349.41464827383146 L 317.734375 350.6744991031776 L 322.27343749999994 351.6777565827782 L 326.8125 352.44803994175203 L 331.35156249999994 353.0119010605699 L 335.890625 353.39851373678215 L 340.42968749999994 353.63933019075193 L 344.96875 353.7677048113941 L 349.50781249999994 353.81848514192075 L 354.046875 353.82757010559203 L 358.58593749999994 353.8314354714733 L 363.125 353.86662656019826 L 367.66406249999994 353.9692181897377 L 372.203125 354.1742418611747 L 376.74218749999994 354.51508018448544 L 381.28124999999994 355.02282854432593 L 385.82031249999994 355.7256240058251 L 390.35937499999994 356.6479414603834 L 394.8984375 357.8098570114776 L 399.43749999999994 359.2262786004715 L 403.9765625 360.9061438724327 L 408.51562499999994 362.85158528195495 L 413.0546875 365.05706243898715 L 417.59374999999994 367.50846169466746 L 422.1328125 370.1821629671643 L 426.67187499999994 373.0440738075223 L 431.2109375 376.0486307055151 L 435.74999999999994 379.1377676355037 L 440.28906249999994 382.2398518423006 L 444.82812499999994 385.26858686704037 L 449.36718749999994 388.12188281305583 L 453.90624999999994 390.6806938517602 L 458.44531249999994 392.8078229685355 L 462.98437499999994 394.34669394862635 L 467.52343749999994 395.1200906030406 L 469.79296874999994 395.15839459728323 L 472.06249999999994 394.9288632344548 L 474.33203124999994 394.40295809658926 L 476.60156249999994 393.55060234312685 L 478.87109374999994 392.3401374726615 L 481.1406249999999 390.7382795728136 L 485.67968749999994 386.2188558966948 L 487.94921874999994 383.22619432340196 L 490.21875 379.69185704330323 L 494.75781249999994 370.8279161624607 L 497.02734374999994 365.4083989755744 L 499.296875 359.2672837312192 L 501.56640624999994 352.3546046031638 L 503.83593749999994 344.6183046998097 L 506.10546874999994 336.0041866834404 L 508.37499999999994 326.45586287759477 L 509.50976562499994 321.3131413402391 L 510.64453124999994 315.9147048625672 L 511.779296875 310.2528664225161 L 512.9140624999999 304.3197925590298 L 514.048828125 298.1075017529284 L 515.1835937499999 291.6078627997824 L 516.3183593749999 284.81259317478435 L 517.453125 277.71325738962656 L 518.5878906249999 270.3012653413786 L 519.72265625 262.5678706533657 L 520.857421875 254.5041690080528 L 521.9921874999999 246.1010964719276 L 523.126953125 237.34942781238436 L 524.2617187499999 228.2397748066153 L 525.3964843749999 218.76258454249597 L 526.53125 208.90813771148058 L 527.0986328125 203.83635987853134 L 527.6660156249999 198.6665468934941 L 528.2333984374999 193.39743627873503 L 528.80078125 188.02775483382584 L 529.3681640625 182.55621858125733 L 529.935546875 176.98153271203043 L 530.5029296874999 171.30239153112254 L 531.0703124999999 165.5174784028256 L 531.6376953124999 159.62546569596574 L 532.205078125 153.62501472899146 L 532.7724609375 147.51477571493984 L 533.33984375 141.29338770627768 L 533.9072265624999 134.95947853961778 L 534.4746093749999 128.51166478030711 L 535.0419921875 121.94855166689678 L 535.609375 115.2687330554804 L 536.1767578125 108.47079136391059 L 536.7441406249999 101.55329751589073 L 537.3115234374999 94.51481088493784 L 537.87890625 87.35387923822844 L 538.4462890625 80.06903868031151 L 539.013671875 72.65881359670016 L 539.5810546874999 65.12171659733878 L 540.1484374999999 57.45624845994075 L 540.7158203124999 49.66089807321015 L 541.283203125 41.734142379928585 L 541.8505859375 33.67444631992362 L 542.41796875 25.480262772909043 L 542.9853515624999 17.150032501202418 L 543.5527343749999 8.68218409231281 L 544.1201171875 0.07513390141292575 L 544.6875 -8.672714006323531" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/></g></g></svg>