Änderungen von Dokument BPE 7 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/12/12 18:46
Von Version 101.1
bearbeitet von Caroline Leplat
am 2024/02/05 15:13
am 2024/02/05 15:13
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 103.1
bearbeitet von Caroline Leplat
am 2024/02/05 15:15
am 2024/02/05 15:15
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -8,14 +8,18 @@ 8 8 {{aufgabe id="Würfel" afb="II" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_16.pdf]]" niveau="g" tags="iqb"}} 9 9 Die Punkte {{formula}}A(0|0|0), B(5|0|0), C(5|5|0) und H(0|0|5){{/formula}} bilden die Eckpunkte eines Würfels. 10 10 1. Bestimmen Sie, die fehlenden Koordinaten der Punkte D, E und G des Würfels und skizzieren Sie diesen in ein dreidimensionales Koordinatensystem. 11 -1.Zeigen Sie, dass jeweils die gegenüber liegenden Seitenflächen 5 Längeneinheiten voneinander entfernt sind. 12 -1.Zeigen Sie, dass das Volumen des Würfels 125 Volumeneinheiten beträgt. 11 +1. Zeigen Sie, dass jeweils die gegenüber liegenden Seitenflächen 5 Längeneinheiten voneinander entfernt sind. 12 +1. Zeigen Sie, dass das Volumen des Würfels 125 Volumeneinheiten beträgt. 13 13 Das Volumen einer Pyramide berechnet sich durch die Formel {{formula}}V=\frac{1}{3}\bullet\left(\left|\vec{AB}\right|\right)^2\bullet\left|\vec{MS}\right|{{/formula}}. 14 14 1. Skizzieren Sie in ein dreidimensionales Koordinatensystem eine Pyramide mit dreieckiger Grundfläche, die das gleiche Volumen wie der Würfel besitzt. Geben Sie die Eckpunkte ihrer Pyramide an. 15 15 {{/aufgabe}} 16 16 17 +{{aufgabe id="Winkel" afb="II" kompetenzen="K1, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_16.pdf]]" niveau="g" tags="iqb"}} 18 +Der Vektor {{formula}}\vec{a}{{/formula}} mit der Länge 2 cm und der Vektor {{formula}}\vec{b}{{/formula}} mit der Länge 3 cm schließen einen Winkel {{formula}}\alpha{{/formula}} ein. Begründen Sie, dass die Gegenvektoren von {{formula}}\vec{a}{{/formula}} und {{formula}}\vec{b}{{/formula}} den gleichen Winkel einschließen. 19 +{{/aufgabe}} 17 17 18 18 22 + 19 19 {{aufgabe id="Nachweis Quader" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/erhoeht/Beispielaufgaben.pdf]]" niveau="g" tags="iqb"}} 20 20 [[image:aufgespannterQuader.PNG||width="150" style="float: right"]] 21 21 Die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}},{{formula}}\vec{b}= \left(\begin{array}{c} -1 \\ 2 \\ 0 \end{array}\right){{/formula}} und {{formula}}\vec{c_t}= \left(\begin{array}{c} 4t \\ 2t \\ -5t \end{array}\right){{/formula}} spannen für jeden Wert von {{formula}} t \in \mathbb{R}\setminus\{0\}{{/formula}} einen Körper auf. Die Abbildung zeigt den Sachverhalt beispielhaft für einen Wert von {{formula}}t{{/formula}}.