Änderungen von Dokument BPE 7 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/12/12 18:46

Von Version 104.1
bearbeitet von Caroline Leplat
am 2024/02/05 15:18
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 106.1
bearbeitet von Holger Engels
am 2024/02/05 16:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.mathemagicbyleplat
1 +XWiki.holgerengels
Inhalt
... ... @@ -68,35 +68,11 @@
68 68  1. Gib einen Term an, mit dem man die Koordinaten von {{formula}}B{{/formula}} bestimmen könnte, wenn die Koordinaten von {{formula}}A{{/formula}} und {{formula}}F{{/formula}} sowie die Komponenten von {{formula}} \vec{v}{{/formula}} bekannt wären.
69 69  {{/aufgabe}}
70 70  
71 -{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}}
72 -[[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
73 -Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
74 -
75 -1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
76 -1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
77 -Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
78 -Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
71 +{{aufgabe id="Dreieck Koordinaten" afb="II" kompetenzen="K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_3.pdf]]" niveau="g" tags="iqb" zeit="6"}}
72 +Gegeben sind die Punkte {{formula}} A(5|0|a){{/formula}} und {{formula}}B(2|4|5){{/formula}}. Der Koordinatenursprung wird mit {{formula}}O{{/formula}} bezeichnet.
79 79  
80 -
81 -Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}.
82 -
83 -3. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})//
84 -
85 -4. Ermittle denjenigen Wert von {{formula}}k{{/formula}}, für den die Größe des Winkels, unter dem die x,,3,,-Achse die Ebene {{formula}}L_k{{/formula}} schneidet, 30° beträgt.
86 -
87 -
88 -[[image:gleichschenkligesdreieckabb2.png||width="220" style="float: right"]]
89 -Zusätzlich zu den Pyramiden wird der in der Abbildung 2 gezeigte Quader betrachtet. Die Punkte {{formula}}A{{/formula}} und {{formula}}Q(1|1|3){{/formula}} sind Eckpunkte des Quaders, die Seitenflächen des Quaders sind parallel zu den Koordinatenebenen.
90 -Für {{formula}}k=6{{/formula}} enthält die Seitenfläche {{formula}}BCD_k{{/formula}} der Pyramide den Eckpunkt {{formula}}Q{{/formula}} des Quaders. Für kleinere Werte von {{formula}}k{{/formula}} schneidet die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader in einem Vieleck.
91 -
92 -5. Für einen Wert von {{formula}}k{{/formula}} verläuft die Seitenfläche {{formula}}BCD_k{{/formula}} durch die Eckpunkte {{formula}}P{{/formula}} und {{formula}}R{{/formula}} des Quaders. Bestimme diesen Wert von {{formula}} k{{/formula}} //(zur Kontrolle: {{formula}}k=4{{/formula}})//
93 -
94 -6.Gib in Abhängigkeit von {{formula}}k{{/formula}} die Anzahl der Eckpunkte des Vielecks an, in dem die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader schneidet.
95 -
96 -
97 -
98 -
99 -7. Nun wird die Pyramide {{formula}}ABCD_6{{/formula}} , d. h. diejenige für {{formula}}k=6{{/formula}}, betrachtet.[[image:gleichschenkligesdreieckabb3.PNG||width="220" style="float: right"]] Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x,,1,,x,,2,,-Ebene, haben den Eckpunkt {{formula}}A{{/formula}} gemeinsam und sind quadratisch. Die Höhe {{formula}}h{{/formula}} der Quader durchläuft alle reellen Werte mit {{formula}}0<h<6{{/formula}}. Für jeden Wert von {{formula}}h{{/formula}}liegt der Eckpunkt {{formula}}Q_h{{/formula}} in der Seitenfläche {{formula}}BCD_6{{/formula}} der Pyramide. Ermittle die Koordinaten des Punkts {{formula}}Q_h{{/formula}}.
74 +1. Bestimme denjenigen Wert von {{formula}} a{{/formula}}, für den {{formula}}A{{/formula}} und {{formula}}B{{/formula}} den Abstand 5 haben.
75 +1. Ermittle denjenigen Wert von {{formula}} a{{/formula}}, für den das Dreieck {{formula}}OAB{{/formula}} im Punkt {{formula}}B{{/formula}} rechtwinklig ist.
100 100  {{/aufgabe}}
101 101  
102 102  {{seitenreflexion/}}