Änderungen von Dokument BPE 7 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/12/12 18:46

Von Version 172.1
bearbeitet von Holger Engels
am 2024/05/07 12:27
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 175.1
bearbeitet von Holger Engels
am 2024/07/02 11:10
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,10 +1,10 @@
1 -{{aufgabe id="Grundriss" afb="I" kompetenzen="K3, K5" cc="BY-SA" zeit="5"quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
1 +{{aufgabe id="Grundriss" afb="I" kompetenzen="K3, K5" cc="BY-SA" zeit="12" quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
2 2  Gegeben sind die Eckpunkte {{formula}}A(2,5|0|0), B(2,5|3|0), C(3,5|3|0),D(3,5|4|0), E(0|4|0), F(0|-3|0),G(5|-3|0), H(5|0|0){{/formula}} des Grundriss einer Wohnung.
3 3  1. Zeichne den Grundriss der Wohnung mit Hilfe der Punkte in ein dreidimensionales Koordinatensystem ein.
4 4  1. Berechne die Größe dieser Wohnung, wenn eine Längeneinheit einem Meter entspricht.
5 5  {{/aufgabe}}
6 6  
7 -{{aufgabe id="Pyramide" afb="II" kompetenzen="K1, K4, K5" cc="BY-SA" zeit="15"quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
7 +{{aufgabe id="Pyramide" afb="II" kompetenzen="K1, K4, K5" cc="BY-SA" zeit="20"quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
8 8  Gegeben ist eine Pyramide mit quadratischer Grundfläche. Die Punkte {{formula}}A(12|0|2), B(12|8|2),C(4|8|2){{/formula}} sind Eckpunkte der Grundfläche. {{formula}} S(8|4|7,5){{/formula}} ist die Spitze der Pyramide.
9 9  1. Zeichne die Pyramide in ein dreidimensionales Koordinatensystem und gib die Koordinaten von Punkt D an.
10 10  1. Bestimme den Mittelpunkt M der Grundfläche der Pyramide.
... ... @@ -20,18 +20,18 @@
20 20  Skizziere in ein dreidimensionales Koordinatensystem eine Pyramide mit dreieckiger Grundfläche, die das gleiche Volumen wie der Würfel besitzt. Gib die Eckpunkte deiner Pyramide an.
21 21  {{/aufgabe}}
22 22  
23 -{{aufgabe id="Winkel" afb="II" kompetenzen="K1, K5"cc="BY-SA" zeit="5" quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
23 +{{aufgabe id="Winkel" afb="II" kompetenzen="K1, K4, K5"cc="BY-SA" zeit="6" quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
24 24  Der Vektor {{formula}}\vec{a}{{/formula}} mit der Länge 2 cm und der Vektor {{formula}}\vec{b}{{/formula}} mit der Länge 3 cm schließen einen Winkel {{formula}}\alpha{{/formula}} ein. Begründe, dass die Gegenvektoren von {{formula}}\vec{a}{{/formula}} und {{formula}}\vec{b}{{/formula}} den gleichen Winkel einschließen.
25 25  {{/aufgabe}}
26 26  
27 27  {{aufgabe id="Richtungsvektor" afb="II" kompetenzen="K1, K5"cc="BY-SA" zeit="5" quelle="Martina Wagner, Caroline Leplat, Dirk Tebbe" tags="Martina Wagner, Caroline Leplat, Dirk Tebbe"}}
28 -1. Benenne die in der Figur erkennbaren Vektoren.
28 +[[image:Richtungsvektoren.jpg||width="206" style="float: right"]]1. Benenne die in der Figur erkennbaren Vektoren.
29 29  1. Zeige, dass die beiden Gleichungen
30 30   {{formula}}\vec{AB}=-(\vec{a}-\vec{b}){{/formula}} und
31 31   {{formula}}\vec{AB}=\vec{OB}-\vec{OA}{{/formula}} den gleichen Richtungsvektor beschreiben.
32 32  {{/aufgabe}}
33 33  
34 -{{aufgabe id="Nachweis Quader" afb="II" kompetenzen="K1, K2, K5"cc="BY-SA" zeit="10" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/erhoeht/Beispielaufgaben.pdf]]"niveau="g" tags="iqb"}}
34 +{{aufgabe id="Nachweis Quader" afb="II" kompetenzen="K1, K2, K5"cc="BY-SA" zeit="15" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/erhoeht/Beispielaufgaben.pdf]]"niveau="g" tags="iqb"}}
35 35  [[image:aufgespannterQuader.PNG||width="150" style="float: right"]]
36 36  Die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}},{{formula}}\vec{b}= \left(\begin{array}{c} -1 \\ 2 \\ 0 \end{array}\right){{/formula}} und {{formula}}\vec{c_t}= \left(\begin{array}{c} 4t \\ 2t \\ -5t \end{array}\right){{/formula}} spannen für jeden Wert von {{formula}} t \in \mathbb{R}\setminus\{0\}{{/formula}} einen Körper auf. Die Abbildung zeigt den Sachverhalt beispielhaft für einen Wert von {{formula}}t{{/formula}}.
37 37  1. Zeige, dass die aufgespannten Körper Quader sind.
... ... @@ -39,7 +39,7 @@
39 39  {{/aufgabe}}
40 40  
41 41  
42 -{{aufgabe id="Berechnungen am Quader" afb="III" kompetenzen="K1, K2, K4,K5, K6"cc="BY-SA" zeit="10" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_4.pdf]]" niveau="g" tags="iqb"}}
42 +{{aufgabe id="Berechnungen am Quader" afb="III" kompetenzen="K1, K2, K4,K5, K6"cc="BY-SA" zeit="12" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_4.pdf]]" niveau="g" tags="iqb"}}
43 43  [[image:QuaderOrtsvektoren.jpg||width="230" style="float: right"]]Die Abbildung zeigt einen Quader sowie die Ortsvektoren der Eckpunkte {{formula}}A, B{{/formula}} und {{formula}}D{{/formula}}. Die Grundfläche {{formula}}OABC{{/formula}} des Quaders ist quadratisch.
44 44  1. Beschreibe die Lage des Punkts, zu dem der Ortsvektor {{formula}}\frac{1}{2}\cdot (\vec{b}-\vec{a}){{/formula}} gehört.
45 45  
... ... @@ -47,7 +47,7 @@
47 47  
48 48  (% start="2" %)
49 49  1. Zeichne {{formula}}P{{/formula}} in die Abbildung ein.
50 -1. Begründe, dass der Wert des Terms {{formula}}\vec{b} \circ \overline{OP}{{/formula}} nur von der Seitenlänge der Grundfläche abhängt.
50 +1. Begründe, dass der Wert des Terms {{formula}}\vec{b} \cdot \overline{OP}{{/formula}} nur von der Seitenlänge der Grundfläche abhängt.
51 51  {{/aufgabe}}
52 52  
53 53  {{aufgabe id="Rasenfläche" afb="III" kompetenzen="K1, K2, K3, K4, K5, K6" cc="BY-SA" zeit="40"quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_16.pdf]]" niveau="g" tags="iqb"}}
... ... @@ -73,7 +73,7 @@
73 73  1. Gib einen Term an, mit dem man die Koordinaten von {{formula}}B{{/formula}} bestimmen könnte, wenn die Koordinaten von {{formula}}A{{/formula}} und {{formula}}F{{/formula}} sowie die Komponenten von {{formula}} \vec{v}{{/formula}} bekannt wären.
74 74  {{/aufgabe}}
75 75  
76 -{{aufgabe id="Dreieck Koordinaten" afb="II" kompetenzen="K2, K5"cc="BY-SA" zeit="8" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_3.pdf]]" niveau="g" tags="iqb" zeit="6"}}
76 +{{aufgabe id="Dreieck Koordinaten" afb="II" kompetenzen="K2, K5"cc="BY-SA" zeit="8" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_3.pdf]]" niveau="g" tags="iqb" zeit="7"}}
77 77  Gegeben sind die Punkte {{formula}} A(5|0|a){{/formula}} und {{formula}}B(2|4|5){{/formula}}. Der Koordinatenursprung wird mit {{formula}}O{{/formula}} bezeichnet.
78 78  
79 79  1. Bestimme denjenigen Wert von {{formula}} a{{/formula}}, für den {{formula}}A{{/formula}} und {{formula}}B{{/formula}} den Abstand 5 haben.