Änderungen von Dokument BPE 7 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/12/12 18:46
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 4 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 21 21 {{aufgabe id="Berechnungen am Quader" afb="" kompetenzen="K1, K2, K4,K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_4.pdf]]" niveau="g" tags="iqb"}} 22 -[[image:QuaderOrtsvektoren. PNG||width="200" style="float: right"]]Die Abbildung zeigt einen Quader sowie die Ortsvektoren der Eckpunkte {{formula}}A, B{{/formula}} und {{formula}}D{{/formula}}. Die Grundfläche {{formula}}OABC{{/formula}} des Quaders ist quadratisch.22 +[[image:QuaderOrtsvektoren.jpg||width="230" style="float: right"]]Die Abbildung zeigt einen Quader sowie die Ortsvektoren der Eckpunkte {{formula}}A, B{{/formula}} und {{formula}}D{{/formula}}. Die Grundfläche {{formula}}OABC{{/formula}} des Quaders ist quadratisch. 23 23 1. Beschreibe die Lage des Punkts, zu dem der Ortsvektor {{formula}}\frac{1}{2}\cdot (\vec{b}-\vec{a}){{/formula}} gehört. 24 24 25 25 Der Punkt {{formula}}P{{/formula}} hat den Ortsvektor {{formula}}\frac{1}{2}\vec{b}+ \vec{d}{{/formula}}. ... ... @@ -43,7 +43,7 @@ 43 43 {{/aufgabe}} 44 44 45 45 {{aufgabe id="Rasenfläche" afb="" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_16.pdf]]" niveau="g" tags="iqb"}} 46 -[[image:Rasenfläche. png||width="250" style="float: right"]]46 +[[image:Rasenfläche.JPG||width="300" style="float: right"]] 47 47 Die Punkte {{formula}}A(0|0|0), B(18|0|1,5), C(12|10|1), D(12|15|1){{/formula}} und {{formula}}E(0|15|0){{/formula}} stellen modellhaft die Eckpunkte einer ebenen Rasenfläche dar (vgl. Abbildung). Die Strecken {{formula}}\overline{AB}{{/formula}} und {{formula}}\overline{DE}{{/formula}} sind parallel. 48 48 Im verwendeten Koordinatensystem entspricht eine Längeneinheit einem Meter in der Wirklichkeit. 49 49 1. Zeige, dass auch {{formula}}\overline{AE}{{/formula}} und {{formula}}\overline{CD}{{/formula}} parallel sind und dass {{formula}}\overline{CD}{{/formula}} und {{formula}}\overline{DE}{{/formula}} einen rechten Winkel einschließen. ... ... @@ -65,13 +65,35 @@ 65 65 1. Gib einen Term an, mit dem man die Koordinaten von {{formula}}B{{/formula}} bestimmen könnte, wenn die Koordinaten von {{formula}}A{{/formula}} und {{formula}}F{{/formula}} sowie die Komponenten von {{formula}} \vec{v}{{/formula}} bekannt wären. 66 66 {{/aufgabe}} 67 67 68 -{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="" kompetenzen="K1, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 68 +{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 69 69 [[image:PyramidenABCDk.png||width="200" style="float: right"]] 70 70 Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung) 71 71 72 72 1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist. 73 73 1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. 74 -Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 74 +Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. 75 +Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 76 + 77 + 78 +Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}. 79 + 80 +3. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 81 + 82 +4.Ermittle denjenigen Wert von {{formula}}k{{/formula}}, für den die Größe des Winkels, unter dem die x,,3,,-Achse die Ebene {{formula}}L_k{{/formula}} schneidet, 30° beträgt. 83 + 84 + 85 +[[image:gleichschenkligesdreieckabb2.png||width="220" style="float: right"]] 86 +Zusätzlich zu den Pyramiden wird der in der Abbildung 2 gezeigte Quader betrachtet. Die Punkte {{formula}}A{{/formula}} und {{formula}}Q(1|1|3){{/formula}} sind Eckpunkte des Quaders, die Seitenflächen des Quaders sind parallel zu den Koordinatenebenen. 87 +Für {{formula}}k=6{{/formula}} enthält die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader in einem Vieleck. 88 + 89 +5. Für einen Wert von {{formula}}k{{/formula}} verläuft die Seitenfläche {{formula}}BCD_k{{/formula}} durch die Eckpunkte {{formula}}P{{/formula}} und {{formula}}R{{/formula}} des Quaders. Bestimme diesen Wert von {{formula}} k{{/formula}} //(zur Kontrolle: {{formula}}k=4{{/formula}})// 90 + 91 +6.Gib in Abhängigkeit von {{formula}}k{{/formula}} die Anzahl der Eckpunkte des Vielecks an, in dem die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader schneidet. 92 + 93 + 94 + 95 + 96 +7. Nun wird die Pyramide {{formula}}ABCD_6{{/formula}} , d. h. diejenige für {{formula}}k=6{{/formula}}, betrachtet.[[image:gleichschenkligesdreieckabb3.PNG||width="220" style="float: right"]] Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x,,1,,x,,2,,-Ebene, haben den Eckpunkt {{formula}}A{{/formula}} gemeinsam und sind quadratisch. Die Höhe {{formula}}h{{/formula}} der Quader durchläuft alle reellen Werte mit {{formula}}0<h<6{{/formula}}. Für jeden Wert von {{formula}}h{{/formula}}liegt der Eckpunkt {{formula}}Q_h{{/formula}} in der Seitenfläche {{formula}}BCD_6{{/formula}} der Pyramide. Ermittle die Koordinaten des Punkts {{formula}}Q_h{{/formula}}. 75 75 {{/aufgabe}} 76 76 77 77 {{seitenreflexion/}}
- Rasenfläche.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Inhalt
- QuaderOrtsvektoren.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +39.7 KB - Inhalt
- Rasenfläche.JPG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +100.6 KB - Inhalt
- gleichschenkligesdreieckabb2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +380.4 KB - Inhalt
- gleichschenkligesdreieckabb3.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +317.8 KB - Inhalt