Änderungen von Dokument BPE 7 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/12/12 18:46
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 2 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,7 +1,7 @@ 1 1 {{aufgabe id="Nachweis Dreieck" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb"}} 2 2 In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben. 3 3 1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind. 4 -1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat. 4 +1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}\displaystyle a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat. 5 5 {{/aufgabe}} 6 6 7 7 {{aufgabe id="Eckpunkte einer Pyramide" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben.pdf]]" niveau="g" tags="iqb"}} ... ... @@ -24,7 +24,7 @@ 24 24 {{/aufgabe}} 25 25 26 26 {{aufgabe id="Berechnungen am Quader" afb="" kompetenzen="K1, K2, K4,K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_4.pdf]]" niveau="g" tags="iqb"}} 27 -[[image:QuaderOrtsvektoren. jpg||width="230" style="float: right"]]Die Abbildung zeigt einen Quader sowie die Ortsvektoren der Eckpunkte {{formula}}A, B{{/formula}} und {{formula}}D{{/formula}}. Die Grundfläche {{formula}}OABC{{/formula}} des Quaders ist quadratisch.27 +[[image:QuaderOrtsvektoren.PNG||width="200" style="float: right"]]Die Abbildung zeigt einen Quader sowie die Ortsvektoren der Eckpunkte {{formula}}A, B{{/formula}} und {{formula}}D{{/formula}}. Die Grundfläche {{formula}}OABC{{/formula}} des Quaders ist quadratisch. 28 28 1. Beschreibe die Lage des Punkts, zu dem der Ortsvektor {{formula}}\frac{1}{2}\cdot (\vec{b}-\vec{a}){{/formula}} gehört. 29 29 30 30 Der Punkt {{formula}}P{{/formula}} hat den Ortsvektor {{formula}}\frac{1}{2}\vec{b}+ \vec{d}{{/formula}}. ... ... @@ -79,4 +79,3 @@ 79 79 Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 80 80 {{/aufgabe}} 81 81 82 -{{seitenreflexion/}}
- QuaderOrtsvektoren.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Inhalt
- Sechseckvektoren.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -165.5 KB - Inhalt
- QuaderOrtsvektoren.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +67.4 KB - Inhalt